def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2*x**2 - 1 assert chebyshevt(3, x) == 4*x**3 - 3*x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 raises(ValueError, lambda: chebyshevt_root(n, n)) for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0 raises(ValueError, lambda: chebyshevu_root(n, n)) n = Symbol("n") X = chebyshevt(n, x) assert isinstance(X, chebyshevt) assert unchanged(chebyshevt, n, x) assert chebyshevt(n, -x) == (-1)**n*chebyshevt(n, x) assert chebyshevt(-n, x) == chebyshevt(n, x) assert chebyshevt(n, 0) == cos(pi*n/2) assert chebyshevt(n, 1) == 1 assert chebyshevt(n, oo) is oo assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x)) assert diff(chebyshevt(n, x), x) == n*chebyshevu(n - 1, x) X = chebyshevu(n, x) assert isinstance(X, chebyshevu) y = Symbol('y') assert chebyshevu(n, -x) == (-1)**n*chebyshevu(n, x) assert chebyshevu(-n, x) == -chebyshevu(n - 2, x) assert unchanged(chebyshevu, -n + y, x) assert chebyshevu(n, 0) == cos(pi*n/2) assert chebyshevu(n, 1) == n + 1 assert chebyshevu(n, oo) is oo assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x)) assert diff(chebyshevu(n, x), x) == \ (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1) _k = Dummy('k') assert chebyshevt(n, x).rewrite("polynomial").dummy_eq(Sum(x**(-2*_k + n) *(x**2 - 1)**_k*binomial(n, 2*_k), (_k, 0, floor(n/2)))) assert chebyshevu(n, x).rewrite("polynomial").dummy_eq(Sum((-1)**_k*(2*x) **(-2*_k + n)*factorial(-_k + n)/(factorial(_k)* factorial(-2*_k + n)), (_k, 0, floor(n/2)))) raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(1)) raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(3)) raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(1)) raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(3))
def callback(q, v=0, u = 0, w=0, kind = 0): ans = '' if kind == 1: ans = str(sp.gamma(v)) elif kind == 2: ans = str(sp.gamma(u) * sp.gamma(v) / sp.gamma(u + v)) elif kind == 3: ans = str(functions.Legendre_Polynomials(v)) elif kind == 4: ans = str(sp.assoc_legendre(v, u, x)) elif kind == 5: ans = str(functions.bessel_function_1st(v)) elif kind == 6: ans = str(sp.jacobi(u, v, w, x)) elif kind == 7: ans = str(sp.jacobi_normalized(u, v, w, x)) elif kind == 8: ans = str(sp.gegenbauer(u, v, x)) elif kind == 9: # 1st kind ans = str(sp.chebyshevt(u, x)) elif kind == 10: ans = str(sp.chebyshevt_root(u, v)) elif kind == 11: # 2nd kind ans = str(sp.chebyshevu(u, x)) elif kind == 12: ans = str(sp.chebyshevu_root(u, v)) elif kind == 13: ans = str(sp.hermite(u, x)) elif kind == 14: ans = str(sp.laguerre(u, x)) elif kind == 15: ans = str(sp.assoc_laguerre(u, v, x)) q.put(ans)
def test_chebyshev(): raises(ValueError, lambda: chebyshevt(-1, x)) raises(ValueError, lambda: chebyshevu(-1, x)) assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2*x**2-1 assert chebyshevt(3, x) == 4*x**3-3*x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 raises(ValueError, lambda: chebyshevt_root(n, n)) for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0 raises(ValueError, lambda: chebyshevu_root(n, n))
def test_chebyshev(): raises(ValueError, lambda: chebyshevt(-1, x)) raises(ValueError, lambda: chebyshevu(-1, x)) assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2 * x**2 - 1 assert chebyshevt(3, x) == 4 * x**3 - 3 * x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 raises(ValueError, lambda: chebyshevt_root(n, n)) for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0 raises(ValueError, lambda: chebyshevu_root(n, n))
def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2*x**2 - 1 assert chebyshevt(3, x) == 4*x**3 - 3*x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 raises(ValueError, lambda: chebyshevt_root(n, n)) for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0 raises(ValueError, lambda: chebyshevu_root(n, n)) n = Symbol("n") X = chebyshevt(n, x) assert isinstance(X, chebyshevt) assert chebyshevt(n, -x) == (-1)**n*chebyshevt(n, x) assert chebyshevt(-n, x) == chebyshevt(n, x) assert chebyshevt(n, 0) == cos(pi*n/2) assert chebyshevt(n, 1) == 1 assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x)) assert diff(chebyshevt(n, x), x) == n*chebyshevu(n - 1, x) X = chebyshevu(n, x) assert isinstance(X, chebyshevu) assert chebyshevu(n, -x) == (-1)**n*chebyshevu(n, x) assert chebyshevu(-n, x) == -chebyshevu(n - 2, x) assert chebyshevu(n, 0) == cos(pi*n/2) assert chebyshevu(n, 1) == n + 1 assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x)) assert diff(chebyshevu(n, x), x) == \ (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2 * x**2 - 1 assert chebyshevt(3, x) == 4 * x**3 - 3 * x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 raises(ValueError, lambda: chebyshevt_root(n, n)) for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0 raises(ValueError, lambda: chebyshevu_root(n, n)) n = Symbol("n") X = chebyshevt(n, x) assert isinstance(X, chebyshevt) assert chebyshevt(n, -x) == (-1)**n * chebyshevt(n, x) assert chebyshevt(-n, x) == chebyshevt(n, x) assert chebyshevt(n, 0) == cos(pi * n / 2) assert chebyshevt(n, 1) == 1 assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x)) assert diff(chebyshevt(n, x), x) == n * chebyshevu(n - 1, x) X = chebyshevu(n, x) assert isinstance(X, chebyshevu) assert chebyshevu(n, -x) == (-1)**n * chebyshevu(n, x) assert chebyshevu(-n, x) == -chebyshevu(n - 2, x) assert chebyshevu(n, 0) == cos(pi * n / 2) assert chebyshevu(n, 1) == n + 1 assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x)) assert diff(chebyshevu(n, x), x) == \ (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2 * x**2 - 1 assert chebyshevt(3, x) == 4 * x**3 - 3 * x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0
def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2*x**2-1 assert chebyshevt(3, x) == 4*x**3-3*x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert simplify(chebyshevt(n, z)) == 0 for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert simplify(chebyshevu(n, z)) == 0