Example #1
0
def test_solve_trig():
    from sympy.abc import n
    assert solveset_real(sin(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi), S.Integers))

    assert solveset_real(sin(x) - 1, x) == \
        imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)

    assert solveset_real(cos(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n - pi/2), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))

    assert solveset_real(sin(x) + cos(x), x) == \
        Union(imageset(Lambda(n, 2*n*pi - pi/4), S.Integers),
              imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers))

    assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet

    assert solveset_complex(cos(x) - S.Half, x) == \
        Union(imageset(Lambda(n, 2*n*pi + pi/3), S.Integers),
              imageset(Lambda(n, 2*n*pi - pi/3), S.Integers))

    y, a = symbols('y,a')
    assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \
        imageset(Lambda(n, 2*n*pi), S.Integers)
Example #2
0
def test_solveset_complex_exp():
    from sympy.abc import x, n

    assert solveset_complex(exp(x) - 1, x) == imageset(Lambda(n, I * 2 * n * pi), S.Integers)
    assert solveset_complex(exp(x) - I, x) == imageset(Lambda(n, I * (2 * n * pi + pi / 2)), S.Integers)
    assert solveset_complex(1 / exp(x), x) == S.EmptySet
    assert solveset_complex(sinh(x).rewrite(exp), x) == imageset(Lambda(n, n * pi * I), S.Integers)
Example #3
0
def test_solve_trig_simplified():
    from sympy.abc import n

    assert solveset_real(sin(x), x) == imageset(Lambda(n, n * pi), S.Integers)

    assert solveset_real(cos(x), x) == imageset(Lambda(n, n * pi + pi / 2), S.Integers)

    assert solveset_real(cos(x) + sin(x), x) == imageset(Lambda(n, n * pi - pi / 4), S.Integers)
Example #4
0
def test_invert_real():
    x = Symbol('x', real=True)
    x = Dummy(real=True)
    n = Symbol('n')
    d = Dummy()
    assert solveset(abs(x) - n, x) == solveset(abs(x) - d, x) == EmptySet()

    n = Symbol('n', real=True)
    assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))

    assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
    assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
    assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))

    assert invert_real(exp(x) + 3, y, x) == (x, FiniteSet(log(y - 3)))
    assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))

    assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
    assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
    assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))

    assert invert_real(Abs(x), y, x) == (x, FiniteSet(-y, y))

    assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
    assert invert_real(2**exp(x), y, x) == (x, FiniteSet(log(log(y)/log(2))))

    assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
    assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))

    raises(ValueError, lambda: invert_real(x, x, x))
    raises(ValueError, lambda: invert_real(x**pi, y, x))
    raises(ValueError, lambda: invert_real(S.One, y, x))

    assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))

    assert invert_real(Abs(x**31 + x + 1), y, x) == (x**31 + x,
                                                     FiniteSet(-y - 1, y - 1))

    assert invert_real(tan(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    assert invert_real(tan(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))

    assert invert_real(cot(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))
    assert invert_real(cot(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))

    assert invert_real(tan(tan(x)), y, x) == \
        (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    x = Symbol('x', positive=True)
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
Example #5
0
def test_solveset():
    x = Symbol("x")
    raises(ValueError, lambda: solveset(x + y))

    assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
    assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
    assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)

    assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
    assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)

    assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2 * I * pi * n), S.Integers)
    assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2 * I * pi * n), S.Integers)
Example #6
0
def test_solveset():
    x = Symbol('x', real=True)
    raises(ValueError, lambda: solveset(x + y))

    assert solveset(exp(x) - 1) == FiniteSet(0)
    assert solveset(exp(x) - 1, x) == FiniteSet(0)
    assert solveset(Eq(exp(x), 1), x) == FiniteSet(0)

    assert solveset(x - 1 >= 0, x) == Interval(1, oo)
    assert solveset(exp(x) - 1 >= 0, x) == Interval(0, oo)

    x = Symbol('x')
    assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers)
    assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n),
                                                  S.Integers)
Example #7
0
def test_solveset():
    x = Symbol('x', real=True)
    raises(ValueError, lambda: solveset(x + y))

    assert solveset(exp(x) - 1) == FiniteSet(0)
    assert solveset(exp(x) - 1, x) == FiniteSet(0)
    assert solveset(Eq(exp(x), 1), x) == FiniteSet(0)

    assert solveset(x - 1 >= 0, x) == Interval(1, oo)
    assert solveset(exp(x) - 1 >= 0, x) == Interval(0, oo)

    x = Symbol('x')
    assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers)
    assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n),
                                                  S.Integers)
Example #8
0
def test_imageset():
    ints = S.Integers
    raises(TypeError, lambda: imageset(x, ints))
    raises(ValueError, lambda: imageset(x, y, z, ints))
    raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
    assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)
    def f(x):
        return cos(x)
    raises(TypeError, lambda: imageset(f, ints))
    f = lambda x: cos(x)
    assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
    assert imageset(x, 1, ints) == FiniteSet(1)
    assert imageset(x, y, ints) == FiniteSet(y)
    assert (str(imageset(lambda y: x + y, Interval(-2, 1)).lamda.expr)
        in ('_x + x', 'x + _x'))
    x1, x2 = symbols("x1, x2")
    assert imageset(lambda x,y: Add(x,y), Interval(1,2), Interval(2, 3)) == \
        ImageSet(Lambda((x1, x2), x1+x2), Interval(1,2), Interval(2,3))
Example #9
0
def test_imageset():
    ints = S.Integers
    raises(TypeError, lambda: imageset(x, ints))
    raises(ValueError, lambda: imageset(x, y, z, ints))
    raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
    assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)
    def f(x):
        return cos(x)
    raises(TypeError, lambda: imageset(f, ints))
    f = lambda x: cos(x)
    assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
    assert imageset(x, 1, ints) == FiniteSet(1)
    assert imageset(x, y, ints) == FiniteSet(y)
    assert (str(imageset(lambda y: x + y, Interval(-2, 1)).lamda.expr)
        in ('_x + x', 'x + _x'))
Example #10
0
def test_invert_complex():
    assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_complex(x * 3, y, x) == (x, FiniteSet(y / 3))

    assert invert_complex(exp(x), y, x) == (x, imageset(Lambda(n, I * (2 * pi * n + arg(y)) + log(Abs(y))), S.Integers))

    assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))

    raises(ValueError, lambda: invert_real(S.One, y, x))
    raises(ValueError, lambda: invert_complex(x, x, x))
Example #11
0
def test_imageset():
    ints = S.Integers
    raises(TypeError, lambda: imageset(x, ints))
    raises(ValueError, lambda: imageset(x, y, z, ints))
    raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
    assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)

    def f(x):
        return cos(x)

    raises(TypeError, lambda: imageset(f, ints))
    f = lambda x: cos(x)
    assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
    assert imageset(x, 1, ints) == FiniteSet(1)
    assert imageset(x, y, ints) == FiniteSet(y)
    assert str(imageset(lambda y: x + y, Interval(-2, 1)).lamda.expr) in ("_x + x", "x + _x")
Example #12
0
def test_solveset():
    x = Symbol('x')
    raises(ValueError, lambda: solveset(x + y))
    raises(ValueError, lambda: solveset(x, 1))

    assert solveset(0, domain=S.Reals) == S.Reals
    assert solveset(1) == S.EmptySet
    assert solveset(True, domain=S.Reals) == S.Reals  # issue 10197
    assert solveset(False, domain=S.Reals) == S.EmptySet

    assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
    assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
    assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)

    assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
    assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)

    assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers)
    assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n),
                                                  S.Integers)
Example #13
0
def test_invert_complex():
    assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_complex(x * 3, y, x) == (x, FiniteSet(y / 3))

    assert invert_complex(exp(x), y, x) == \
        (x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers))

    assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))

    raises(ValueError, lambda: invert_real(S.One, y, x))
    raises(ValueError, lambda: invert_complex(x, x, x))
Example #14
0
def test_solveset():
    x = Symbol('x')
    raises(ValueError, lambda: solveset(x + y))
    raises(ValueError, lambda: solveset(x, 1))

    assert solveset(0, domain=S.Reals) == S.Reals
    assert solveset(1) == S.EmptySet
    assert solveset(True, domain=S.Reals) == S.Reals  # issue 10197
    assert solveset(False, domain=S.Reals) == S.EmptySet

    assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
    assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
    assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)

    assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
    assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)

    assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers)
    assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n),
                                                  S.Integers)
Example #15
0
def test_image_interval():
    x = Symbol("x", real=True)
    assert imageset(x, 2 * x, Interval(-2, 1)) == Interval(-4, 2)
    assert imageset(x, 2 * x, Interval(-2, 1, True, False)) == Interval(-4, 2, True, False)
    assert imageset(x, x ** 2, Interval(-2, 1, True, False)) == Interval(0, 4, False, True)
    assert imageset(x, x ** 2, Interval(-2, 1)) == Interval(0, 4)
    assert imageset(x, x ** 2, Interval(-2, 1, True, False)) == Interval(0, 4, False, True)
    assert imageset(x, x ** 2, Interval(-2, 1, True, True)) == Interval(0, 4, False, True)
Example #16
0
def test_conditionset():
    assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \
        ConditionSet(x, True, S.Reals)

    assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals) == \
        ConditionSet(x, Eq(x*(x + sin(x)) - 1, 0), S.Reals)

    assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals) == \
        ConditionSet(x, Eq(-x + sin(Abs(x)), 0), Interval(-oo, oo))

    assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x) == \
        imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)

    assert solveset(x + sin(x) > 1, x, domain=S.Reals) == \
        ConditionSet(x, x + sin(x) > 1, S.Reals)
Example #17
0
def test_conditonset():
    assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \
        ConditionSet(x, True, S.Reals)

    assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals) == \
        ConditionSet(x, Eq(x*(x + sin(x)) - 1, 0), S.Reals)

    assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals) == \
        ConditionSet(x, Eq(-x + sin(Abs(x)), 0), Interval(-oo, oo))

    assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x) == \
        imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)

    assert solveset(x + sin(x) > 1, x, domain=S.Reals) == \
        ConditionSet(x, x + sin(x) > 1, S.Reals)
Example #18
0
def test_image_interval():
    x = Symbol('x', real=True)
    assert imageset(x, 2 * x, Interval(-2, 1)) == Interval(-4, 2)
    assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
            Interval(-4, 2, True, False)
    assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
            Interval(0, 4, False, True)
    assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4)
    assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
            Interval(0, 4, False, True)
    assert imageset(x, x**2, Interval(-2, 1, True, True)) == \
            Interval(0, 4, False, True)
Example #19
0
def test_solve_trig():
    from sympy.abc import n
    assert solveset_real(sin(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi), S.Integers))

    assert solveset_real(sin(x) - 1, x) == \
        imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)

    assert solveset_real(cos(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n - pi/2), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))

    assert solveset_real(sin(x) + cos(x), x) == \
        Union(imageset(Lambda(n, 2*n*pi - pi/4), S.Integers),
              imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers))

    assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
Example #20
0
def test_solve_trig():
    from sympy.abc import n
    assert solveset_real(sin(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi), S.Integers))

    assert solveset_real(sin(x) - 1, x) == \
        imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)

    assert solveset_real(cos(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n - pi/2), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))

    assert solveset_real(sin(x) + cos(x), x) == \
        Union(imageset(Lambda(n, 2*n*pi - pi/4), S.Integers),
              imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers))

    assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
Example #21
0
def max_univariate_value(expr, symbol, domain=sm.S.Reals):
    printing.init_printing(use_latex='png')
    
    diff = sm.diff(expr, symbol).simplify()
    
    if not symbol in diff.free_symbols: #for constant exprs
        return sm.Interval(0,0);
    
    solution = sm.solveset(sm.Eq(diff, 0), symbol, domain).intersection(domain)
    display(solution)
    #new_solutions = []
    #for new_sol in solution:
    #    for old_sol in solutions:
    #        in_sol = sm.solveset(sm.Eq(symbol, new_sol), symbol, domain)
    #        new_solutions.append(in_sol.intersection(old_sol))
            
    #solutions = new_solutions
    
    maximum = sm.imageset(symbol, expr, solution).sup
    result = sm.solveset(sm.Eq(expr, maximum), symbol, domain)
    
    return result
Example #22
0
def test_issue_16878b():
    # in intersection_sets for (ImageSet, Set) there is no code
    # that handles the base_set of S.Reals like there is
    # for Integers
    assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True
Example #23
0
def test_solveset_complex_tan():
    s = solveset_complex(tan(x).rewrite(exp), x)
    assert s == imageset(Lambda(n, pi*n), S.Integers) - \
        imageset(Lambda(n, pi*n + pi/2), S.Integers)
Example #24
0
def test_invert_real():
    x = Dummy(real=True)
    n = Symbol('n')

    minus_n = Intersection(Interval(-oo, 0), FiniteSet(-n))
    plus_n = Intersection(Interval(0, oo), FiniteSet(n))
    assert solveset(abs(x) - n, x, S.Reals) == Union(minus_n, plus_n)

    n = Symbol('n', real=True)
    assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))

    assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
    assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
    assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))

    assert invert_real(exp(x) + 3, y, x) == (x, FiniteSet(log(y - 3)))
    assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))

    assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
    assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
    assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))

    minus_y = Intersection(Interval(-oo, 0), FiniteSet(-y))
    plus_y = Intersection(Interval(0, oo), FiniteSet(y))
    assert invert_real(Abs(x), y, x) == (x, Union(minus_y, plus_y))

    assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
    assert invert_real(2**exp(x), y, x) == (x, FiniteSet(log(log(y)/log(2))))

    assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
    assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))

    raises(ValueError, lambda: invert_real(x, x, x))
    raises(ValueError, lambda: invert_real(x**pi, y, x))
    raises(ValueError, lambda: invert_real(S.One, y, x))

    assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))

    y_1 = Intersection(Interval(-1, oo), FiniteSet(y - 1))
    y_2 = Intersection(Interval(-oo, -1), FiniteSet(-y - 1))
    assert invert_real(Abs(x**31 + x + 1), y, x) == (x**31 + x,
                                                     Union(y_1, y_2))

    assert invert_real(sin(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))

    assert invert_real(sin(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))

    assert invert_real(csc(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))

    assert invert_real(csc(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))

    assert invert_real(cos(x), y, x) == \
        (x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
                imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))

    assert invert_real(cos(exp(x)), y, x) == \
        (x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \
                imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers)))

    assert invert_real(sec(x), y, x) == \
        (x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
                imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))

    assert invert_real(sec(exp(x)), y, x) == \
        (x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \
                imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers)))

    assert invert_real(tan(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    assert invert_real(tan(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))

    assert invert_real(cot(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))

    assert invert_real(cot(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))

    assert invert_real(tan(tan(x)), y, x) == \
        (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    x = Symbol('x', positive=True)
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))

    # Test for ``set_h`` containing information about the domain

    n = Dummy('n')
    x = Symbol('x')

    h1 = Intersection(Interval(-3, oo), FiniteSet(a + b - 3),
                      imageset(Lambda(n, -n + a - 3), Interval(-oo, 0)))

    h2 = Intersection(Interval(-oo, -3), FiniteSet(-a + b - 3),
                      imageset(Lambda(n, n - a - 3), Interval(0, oo)))

    h3 = Intersection(Interval(-3, oo), FiniteSet(a - b - 3),
                      imageset(Lambda(n, -n + a - 3), Interval(0, oo)))

    h4 = Intersection(Interval(-oo, -3), FiniteSet(-a - b - 3),
                      imageset(Lambda(n, n - a - 3), Interval(-oo, 0)))

    assert invert_real(Abs(Abs(x + 3) - a) - b, 0, x) == (x, Union(h1, h2, h3, h4))
Example #25
0
def test_imageset():
    ints = S.Integers
    assert imageset(x, x - 1, S.Naturals) is S.Naturals0
    assert imageset(x, x + 1, S.Naturals0) is S.Naturals
    assert imageset(x, abs(x), S.Naturals0) is S.Naturals0
    assert imageset(x, abs(x), S.Naturals) is S.Naturals
    assert imageset(x, abs(x), S.Integers) is S.Naturals0
    # issue 16878a
    r = symbols('r', real=True)
    assert (1, r) not in imageset(x, (x, x), S.Reals)
    assert (r, r) in imageset(x, (x, x), S.Reals)
    assert 1 + I in imageset(x, x + I, S.Reals)
    assert {1} not in imageset(x, (x,), S.Reals)
    assert (1, 1) not in imageset(x, (x,) , S.Reals)
    raises(TypeError, lambda: imageset(x, ints))
    raises(ValueError, lambda: imageset(x, y, z, ints))
    raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
    raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints))
    assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)
    def f(x):
        return cos(x)
    assert imageset(f, ints) == imageset(x, cos(x), ints)
    f = lambda x: cos(x)
    assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
    assert imageset(x, 1, ints) == FiniteSet(1)
    assert imageset(x, y, ints) == {y}
    assert imageset((x, y), (1, z), ints*S.Reals) == {(1, z)}
    clash = Symbol('x', integer=true)
    assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr)
        in ('_x + x', 'x + _x'))
    x1, x2 = symbols("x1, x2")
    assert imageset(lambda x,y: Add(x,y), Interval(1,2), Interval(2, 3)) == \
        ImageSet(Lambda((x1, x2), x1+x2), Interval(1,2), Interval(2,3))
Example #26
0
def test_solve_trig():
    from sympy.abc import n
    assert solveset_real(sin(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi), S.Integers))

    assert solveset_real(sin(x) - 1, x) == \
        imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)

    assert solveset_real(cos(x), x) == \
        Union(imageset(Lambda(n, 2*pi*n - pi/2), S.Integers),
              imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))

    assert solveset_real(sin(x) + cos(x), x) == \
        Union(imageset(Lambda(n, 2*n*pi - pi/4), S.Integers),
              imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers))

    assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet

    assert solveset_complex(cos(x) - S.Half, x) == \
        Union(imageset(Lambda(n, 2*n*pi + pi/3), S.Integers),
              imageset(Lambda(n, 2*n*pi - pi/3), S.Integers))

    y, a = symbols('y,a')
    assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \
        Union(imageset(Lambda(n, 2*n*pi), S.Integers),
        imageset(Lambda(n,
        -I*(I*(2*n*pi +arg(-exp(-2*I*y))) + 2*im(y))), S.Integers))
Example #27
0
def test_solveset_complex_exp():
    from sympy.abc import x, n
    assert solveset_complex(exp(x) - 1, x) == \
        imageset(Lambda(n, I*2*n*pi), S.Integers)
    assert solveset_complex(exp(x) - I, x) == \
        imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers)
Example #28
0
def test_image_piecewise():
    f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True))
    f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True))
    assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(S(1)/25, oo))
    assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1)
Example #29
0
def test_image_FiniteSet():
    x = Symbol('x', real=True)
    assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6)
Example #30
0
def test_image_EmptySet():
    x = Symbol('x', real=True)
    assert imageset(x, 2*x, S.EmptySet) == S.EmptySet
Example #31
0
def test_image_interval():
    from sympy.core.numbers import Rational
    x = Symbol('x', real=True)
    a = Symbol('a', real=True)
    assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2)
    assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
        Interval(-4, 2, True, False)
    assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
        Interval(0, 4, False, True)
    assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4)
    assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
        Interval(0, 4, False, True)
    assert imageset(x, x**2, Interval(-2, 1, True, True)) == \
        Interval(0, 4, False, True)
    assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1)
    assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \
        Interval(-35, 0)  # Multiple Maxima
    assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \
        + Interval(2, oo)  # Single Infinite discontinuity
    assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \
        Interval(Rational(3, 2), oo, False)  # Multiple Infinite discontinuities

    # Test for Python lambda
    assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2)

    assert imageset(Lambda(x, a*x), Interval(0, 1)) == \
            ImageSet(Lambda(x, a*x), Interval(0, 1))

    assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \
            ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1))
Example #32
0
def test_invert_real():
    x = Symbol('x', real=True)
    y = Symbol('y')
    n = Symbol('n')

    def ireal(x, s=S.Reals):
        return Intersection(s, x)

    minus_n = Intersection(Interval(-oo, 0), FiniteSet(-n))
    plus_n = Intersection(Interval(0, oo), FiniteSet(n))
    assert solveset(abs(x) - n, x, S.Reals) == Union(minus_n, plus_n)

    assert invert_real(exp(x), y, x) == (x, ireal(FiniteSet(log(y))))

    y = Symbol('y', positive=True)
    n = Symbol('n', real=True)
    assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
    assert invert_real(x * 3, y, x) == (x, FiniteSet(y / 3))

    assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
    assert invert_real(exp(3 * x), y, x) == (x, FiniteSet(log(y) / 3))
    assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))

    assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))
    assert invert_real(exp(x) * 3, y, x) == (x, FiniteSet(log(y / 3)))

    assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
    assert invert_real(log(3 * x), y, x) == (x, FiniteSet(exp(y) / 3))
    assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))

    minus_y = Intersection(Interval(-oo, 0), FiniteSet(-y))
    plus_y = Intersection(Interval(0, oo), FiniteSet(y))
    assert invert_real(Abs(x), y, x) == (x, Union(minus_y, plus_y))

    assert invert_real(2**x, y, x) == (x, FiniteSet(log(y) / log(2)))
    assert invert_real(2**exp(x), y,
                       x) == (x, ireal(FiniteSet(log(log(y) / log(2)))))

    assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
    assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))

    raises(ValueError, lambda: invert_real(x, x, x))
    raises(ValueError, lambda: invert_real(x**pi, y, x))
    raises(ValueError, lambda: invert_real(S.One, y, x))

    assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))

    y_1 = Intersection(Interval(-1, oo), FiniteSet(y - 1))
    y_2 = Intersection(Interval(-oo, -1), FiniteSet(-y - 1))
    assert invert_real(Abs(x**31 + x + 1), y,
                       x) == (x**31 + x, Union(y_1, y_2))

    assert invert_real(sin(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))

    assert invert_real(sin(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))

    assert invert_real(csc(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))

    assert invert_real(csc(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))

    assert invert_real(cos(x), y, x) == \
        (x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
                imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))

    assert invert_real(cos(exp(x)), y, x) == \
        (x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \
                imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers)))

    assert invert_real(sec(x), y, x) == \
        (x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
                imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))

    assert invert_real(sec(exp(x)), y, x) == \
        (x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \
                imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers)))

    assert invert_real(tan(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    assert invert_real(tan(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers))

    assert invert_real(cot(x), y, x) == \
        (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers))

    assert invert_real(cot(exp(x)), y, x) == \
        (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers))

    assert invert_real(tan(tan(x)), y, x) == \
        (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers))

    x = Symbol('x', positive=True)
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1 / pi)))

    # Test for ``set_h`` containing information about the domain

    n = Dummy('n')
    x = Symbol('x')

    h1 = Intersection(Interval(-oo, -3), FiniteSet(-a + b - 3),
                      imageset(Lambda(n, n - a - 3), Interval(0, oo)))

    h2 = Intersection(Interval(-3, oo), FiniteSet(a - b - 3),
                      imageset(Lambda(n, -n + a - 3), Interval(0, oo)))

    assert invert_real(Abs(Abs(x + 3) - a) - b, 0, x) == (x, Union(h1, h2))
Example #33
0
def test_image_Intersection():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \
           Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2)))
Example #34
0
def test_solveset_complex_tan():
    s = solveset_complex(tan(x).rewrite(exp), x)
    assert s == imageset(Lambda(n, pi*n), S.Integers) - \
        imageset(Lambda(n, pi*n + pi/2), S.Integers)
Example #35
0
def test_image_Union():
    x = Symbol('x', real=True)
    assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \
            (Interval(0, 4) + FiniteSet(9))
Example #36
0
def test_solveset_complex_exp():
    from sympy.abc import x, n

    assert solveset_complex(exp(x) - 1, x) == imageset(Lambda(n, I * 2 * n * pi), S.Integers)
    assert solveset_complex(exp(x) - I, x) == imageset(Lambda(n, I * (2 * n * pi + pi / 2)), S.Integers)
Example #37
0
def test_issue_10113():
    f = x**2/(x**2 - 4)
    assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True))
    assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0)
    assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(S(9)/5, oo))
Example #38
0
def test_imageset():
    ints = S.Integers
    raises(TypeError, lambda: imageset(x, ints))
    raises(ValueError, lambda: imageset(x, y, z, ints))
    raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
    assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)

    def f(x):
        return cos(x)

    assert imageset(f, ints) == imageset(x, cos(x), ints)
    f = lambda x: cos(x)
    assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
    assert imageset(x, 1, ints) == FiniteSet(1)
    assert imageset(x, y, ints) == FiniteSet(y)
    clash = Symbol('x', integer=true)
    assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr)
            in ('_x + x', 'x + _x'))
    x1, x2 = symbols("x1, x2")
    assert imageset(lambda x,y: Add(x,y), Interval(1,2), Interval(2, 3)) == \
        ImageSet(Lambda((x1, x2), x1+x2), Interval(1,2), Interval(2,3))