Example #1
0
def test_rewriting():
    assert dirichlet_eta(x).rewrite(zeta) == (1 - 2**(1 - x))*zeta(x)
    assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x)/(1 - 2**(1 - x))
    assert tn(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x)
    assert tn(zeta(x), zeta(x).rewrite(dirichlet_eta), x)

    assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a)
    assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1)*z

    assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a)
    assert z*lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z)
Example #2
0
def test_rewriting():
    assert dirichlet_eta(x).rewrite(zeta) == (1 - 2 ** (1 - x)) * zeta(x)
    assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x) / (1 - 2 ** (1 - x))
    assert tn(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x)
    assert tn(zeta(x), zeta(x).rewrite(dirichlet_eta), x)

    assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a)
    assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1) * z

    assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a)
    assert z * lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z)
Example #3
0
def test_lerchphi():
    from sympy import gammasimp, exp_polar, polylog, log, lerchphi

    assert hyperexpand(hyper([1, a], [a + 1], z) / a) == lerchphi(z, 1, a)
    assert hyperexpand(hyper([1, a, a], [a + 1, a + 1], z) / a**2) == lerchphi(
        z, 2, a)
    assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z) /
                       a**3) == lerchphi(z, 3, a)
    assert hyperexpand(hyper([1] + [a] * 10, [a + 1] * 10, z) /
                       a**10) == lerchphi(z, 10, a)
    assert gammasimp(
        hyperexpand(meijerg([0, 1 - a], [], [0], [-a],
                            exp_polar(-I * pi) * z))) == lerchphi(z, 1, a)
    assert gammasimp(
        hyperexpand(
            meijerg([0, 1 - a, 1 - a], [], [0], [-a, -a],
                    exp_polar(-I * pi) * z))) == lerchphi(z, 2, a)
    assert gammasimp(
        hyperexpand(
            meijerg([0, 1 - a, 1 - a, 1 - a], [], [0], [-a, -a, -a],
                    exp_polar(-I * pi) * z))) == lerchphi(z, 3, a)

    assert hyperexpand(z * hyper([1, 1], [2], z)) == -log(1 + -z)
    assert hyperexpand(z * hyper([1, 1, 1], [2, 2], z)) == polylog(2, z)
    assert hyperexpand(z * hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z)

    assert hyperexpand(
        hyper([1, a, 1 + S.Half], [a + 1, S.Half],
              z)) == -2 * a / (z - 1) + (-2 * a**2 + a) * lerchphi(z, 1, a)

    # Now numerical tests. These make sure reductions etc are carried out
    # correctly

    # a rational function (polylog at negative integer order)
    assert can_do([2, 2, 2], [1, 1])

    # NOTE these contain log(1-x) etc ... better make sure we have |z| < 1
    # reduction of order for polylog
    assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10)

    # reduction of order for lerchphi
    # XXX lerchphi in mpmath is flaky
    assert can_do([1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b],
                  numerical=False)

    # test a bug
    from sympy import Abs

    assert hyperexpand(
        hyper(
            [S.Half, S.Half, S.Half, 1],
            [Rational(3, 2), Rational(3, 2),
             Rational(3, 2)],
            Rational(1, 4),
        )) == Abs(-polylog(3,
                           exp_polar(I * pi) / 2) + polylog(3, S.Half))
Example #4
0
def test_derivatives():
    from sympy import Derivative
    assert zeta(x, a).diff(x) == Derivative(zeta(x, a), x)
    assert zeta(x, a).diff(a) == -x * zeta(x + 1, a)
    assert lerchphi(
        z, s, a).diff(z) == (lerchphi(z, s - 1, a) - a * lerchphi(z, s, a)) / z
    assert lerchphi(z, s, a).diff(a) == -s * lerchphi(z, s + 1, a)
    assert polylog(s, z).diff(z) == polylog(s - 1, z) / z

    b = randcplx()
    c = randcplx()
    assert td(zeta(b, x), x)
    assert td(polylog(b, z), z)
    assert td(lerchphi(c, b, x), x)
    assert td(lerchphi(x, b, c), x)
    raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(2))
    raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(4))
    raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(1))
    raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(3))
Example #5
0
def test_lerchphi():
    from sympy import combsimp, exp_polar, polylog, log, lerchphi
    assert hyperexpand(hyper([1, a], [a + 1], z)/a) == lerchphi(z, 1, a)
    assert hyperexpand(
        hyper([1, a, a], [a + 1, a + 1], z)/a**2) == lerchphi(z, 2, a)
    assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \
           lerchphi(z, 3, a)
    assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) \
           == lerchphi(z, 10, a)
    assert combsimp(hyperexpand(meijerg([0, 1 - a], [], [0], [-a],
                    exp_polar(-I*pi)*z))) == \
           lerchphi(z, 1, a)
    assert combsimp(hyperexpand(meijerg([0, 1 - a, 1 - a], [], [0], [-a, -a],
                    exp_polar(-I*pi)*z))) == \
           lerchphi(z, 2, a)
    assert combsimp(
        hyperexpand(meijerg([0, 1 - a, 1 - a, 1 - a], [], [0], [-a, -a, -a],
                    exp_polar(-I*pi)*z))) == \
           lerchphi(z, 3, a)

    assert hyperexpand(z*hyper([1, 1], [2], z)) == -log(1 + -z)
    assert hyperexpand(z*hyper([1, 1, 1], [2, 2], z)) == polylog(2, z)
    assert hyperexpand(z*hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z)

    assert hyperexpand(hyper([1, a, 1 + S(1)/2], [a + 1, S(1)/2], z)) == \
           -2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a)

    # Now numerical tests. These make sure reductions etc are carried out
    # correctly

    # a rational function (polylog at negative integer order)
    assert can_do([2, 2, 2], [1, 1])

    # NOTE these contain log(1-x) etc ... better make sure we have |z| < 1
    # reduction of order for polylog
    assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10)

    # reduction of order for lerchphi
    # XXX lerchphi in mpmath is flaky
    assert can_do(
        [1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b], numerical=False)

    # test a bug
    from sympy import Abs
    assert hyperexpand(hyper([S(1)/2, S(1)/2, S(1)/2, 1],
                             [S(3)/2, S(3)/2, S(3)/2], S(1)/4)) == \
        Abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, S(1)/2))
Example #6
0
def test_derivatives():
    from sympy import Derivative
    assert zeta(x, a).diff(x) == Derivative(zeta(x, a), x)
    assert zeta(x, a).diff(a) == -x*zeta(x + 1, a)
    assert lerchphi(z, s, a).diff(z) == (lerchphi(z, s-1, a) - a*lerchphi(z, s, a))/z
    assert lerchphi(z, s, a).diff(a) == -s*lerchphi(z, s+1, a)
    assert polylog(s, z).diff(z) == polylog(s - 1, z)/z

    b = randcplx()
    c = randcplx()
    assert td(zeta(b, x), x)
    assert td(polylog(b, z), z)
    assert td(lerchphi(c, b, x), x)
    assert td(lerchphi(x, b, c), x)
Example #7
0
def test_expint():
    from sympy import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei

    aneg = Symbol("a", negative=True)
    u = Symbol("u", polar=True)

    assert mellin_transform(E1(x), x, s) == (gamma(s) / s, (0, oo), True)
    assert inverse_mellin_transform(gamma(s) / s, s, x, (0, oo)).rewrite(expint).expand() == E1(x)
    assert mellin_transform(expint(a, x), x, s) == (gamma(s) / (a + s - 1), (Max(1 - re(a), 0), oo), True)
    # XXX IMT has hickups with complicated strips ...
    assert simplify(
        unpolarify(
            inverse_mellin_transform(gamma(s) / (aneg + s - 1), s, x, (1 - aneg, oo)).rewrite(expint).expand(func=True)
        )
    ) == expint(aneg, x)

    assert mellin_transform(Si(x), x, s) == (
        -2 ** s * sqrt(pi) * gamma(s / 2 + S(1) / 2) / (2 * s * gamma(-s / 2 + 1)),
        (-1, 0),
        True,
    )
    assert inverse_mellin_transform(
        -2 ** s * sqrt(pi) * gamma((s + 1) / 2) / (2 * s * gamma(-s / 2 + 1)), s, x, (-1, 0)
    ) == Si(x)

    assert mellin_transform(Ci(sqrt(x)), x, s) == (
        -2 ** (2 * s - 1) * sqrt(pi) * gamma(s) / (s * gamma(-s + S(1) / 2)),
        (0, 1),
        True,
    )
    assert inverse_mellin_transform(
        -4 ** s * sqrt(pi) * gamma(s) / (2 * s * gamma(-s + S(1) / 2)), s, u, (0, 1)
    ).expand() == Ci(sqrt(u))

    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s ** 2) / 2 / s, 0, True)
    assert laplace_transform(expint(a, x), x, s) == (lerchphi(s * polar_lift(-1), 1, a), 0, S(0) < re(a))
    assert laplace_transform(expint(1, x), x, s) == (log(s + 1) / s, 0, True)
    assert laplace_transform(expint(2, x), x, s) == ((s - log(s + 1)) / s ** 2, 0, True)

    assert inverse_laplace_transform(-log(1 + s ** 2) / 2 / s, s, u).expand() == Heaviside(u) * Ci(u)
    assert inverse_laplace_transform(log(s + 1) / s, s, x).rewrite(expint) == Heaviside(x) * E1(x)
    assert (
        inverse_laplace_transform((s - log(s + 1)) / s ** 2, s, x).rewrite(expint).expand()
        == (expint(2, x) * Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
    )
Example #8
0
def test_expint():
    from sympy import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei
    aneg = Symbol('a', negative=True)
    u = Symbol('u', polar=True)

    assert mellin_transform(E1(x), x, s) == (gamma(s) / s, (0, oo), True)
    assert inverse_mellin_transform(gamma(s) / s, s, x,
                                    (0, oo)).rewrite(expint).expand() == E1(x)
    assert mellin_transform(expint(a, x), x, s) == \
        (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True)
    # XXX IMT has hickups with complicated strips ...
    assert simplify(unpolarify(
                    inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x,
                  (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \
        expint(aneg, x)

    assert mellin_transform(Si(x), x, s) == \
        (-2**s*sqrt(pi)*gamma(s/2 + S(1)/2)/(
        2*s*gamma(-s/2 + 1)), (-1, 0), True)
    assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
                                    /(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
        == Si(x)

    assert mellin_transform(Ci(sqrt(x)), x, s) == \
        (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S(1)/2)), (0, 1), True)
    assert inverse_mellin_transform(
        -4**s * sqrt(pi) * gamma(s) / (2 * s * gamma(-s + S(1) / 2)), s, u,
        (0, 1)).expand() == Ci(sqrt(u))

    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2) / 2 / s, 0, True)
    assert laplace_transform(expint(a, x), x, s) == \
        (lerchphi(s*polar_lift(-1), 1, a), 0, S(0) < re(a))
    assert laplace_transform(expint(1, x), x, s) == (log(s + 1) / s, 0, True)
    assert laplace_transform(expint(2, x), x, s) == \
        ((s - log(s + 1))/s**2, 0, True)

    assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \
        Heaviside(u)*Ci(u)
    assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \
        Heaviside(x)*E1(x)
    assert inverse_laplace_transform((s - log(s + 1))/s**2, s,
                x).rewrite(expint).expand() == \
        (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
Example #9
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,
                                  k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x,
                         y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'

    assert latex(jacobi(n, a, b,
                        x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(
        n, a, b,
        x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(gegenbauer(n, a,
                            x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(
        n, a,
        x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(chebyshevt(n,
                            x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(chebyshevu(n,
                            x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_legendre(n, a,
                                x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(
        n, a,
        x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_laguerre(n, a,
                                x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(
        n, a,
        x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0)**
                 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
Example #10
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function("f")
    assert latex(f(x)) == "\\operatorname{f}{\\left (x \\right )}"

    beta = Function("beta")

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2 * x ** 2), fold_func_brackets=True) == r"\sin {2 x^{2}}"
    assert latex(sin(x ** 2), fold_func_brackets=True) == r"\sin {x^{2}}"

    assert latex(asin(x) ** 2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="full") == r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="power") == r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x ** 2), inv_trig_style="power", fold_func_brackets=True) == r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x ** 3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y) ** 2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x ** 3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y) ** 2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r"\gamma\left(x, y\right)"
    assert latex(uppergamma(x, y)) == r"\Gamma\left(x, y\right)"

    assert latex(cot(x)) == r"\cot{\left (x \right )}"
    assert latex(coth(x)) == r"\coth{\left (x \right )}"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(root(x, y)) == r"x^{\frac{1}{y}}"
    assert latex(arg(x)) == r"\arg{\left (x \right )}"
    assert latex(zeta(x)) == r"\zeta\left(x\right)"

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x) ** 2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y) ** 2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x) ** 2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x, y) ** 2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n) ** 2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r"\operatorname{Ei}{\left (x \right )}"
    assert latex(Ei(x) ** 2) == r"\operatorname{Ei}^{2}{\left (x \right )}"
    assert latex(expint(x, y) ** 2) == r"\operatorname{E}_{x}^{2}\left(y\right)"
    assert latex(Shi(x) ** 2) == r"\operatorname{Shi}^{2}{\left (x \right )}"
    assert latex(Si(x) ** 2) == r"\operatorname{Si}^{2}{\left (x \right )}"
    assert latex(Ci(x) ** 2) == r"\operatorname{Ci}^{2}{\left (x \right )}"
    assert latex(Chi(x) ** 2) == r"\operatorname{Chi}^{2}{\left (x \right )}"

    assert latex(jacobi(n, a, b, x)) == r"P_{n}^{\left(a,b\right)}\left(x\right)"
    assert latex(jacobi(n, a, b, x) ** 2) == r"\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}"
    assert latex(gegenbauer(n, a, x)) == r"C_{n}^{\left(a\right)}\left(x\right)"
    assert latex(gegenbauer(n, a, x) ** 2) == r"\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(chebyshevt(n, x)) == r"T_{n}\left(x\right)"
    assert latex(chebyshevt(n, x) ** 2) == r"\left(T_{n}\left(x\right)\right)^{2}"
    assert latex(chebyshevu(n, x)) == r"U_{n}\left(x\right)"
    assert latex(chebyshevu(n, x) ** 2) == r"\left(U_{n}\left(x\right)\right)^{2}"
    assert latex(legendre(n, x)) == r"P_{n}\left(x\right)"
    assert latex(legendre(n, x) ** 2) == r"\left(P_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_legendre(n, a, x)) == r"P_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_legendre(n, a, x) ** 2) == r"\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(laguerre(n, x)) == r"L_{n}\left(x\right)"
    assert latex(laguerre(n, x) ** 2) == r"\left(L_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_laguerre(n, a, x)) == r"L_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_laguerre(n, a, x) ** 2) == r"\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(hermite(n, x)) == r"H_{n}\left(x\right)"
    assert latex(hermite(n, x) ** 2) == r"\left(H_{n}\left(x\right)\right)^{2}"

    # Test latex printing of function names with "_"
    assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0) ** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
Example #11
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,
                                  k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re {\left (x + y \right )}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x,
                         y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'
Example #12
0
def test_lerchphi_expansion():
    assert myexpand(lerchphi(1, s, a), zeta(s, a))
    assert myexpand(lerchphi(z, s, 1), polylog(s, z) / z)

    # direct summation
    assert myexpand(lerchphi(z, -1, a), a / (1 - z) + z / (1 - z)**2)
    assert myexpand(lerchphi(z, -3, a), None)

    # polylog reduction
    assert myexpand(
        lerchphi(z, s,
                 S(1) / 2),
        2**(s - 1) * (polylog(s, sqrt(z)) / sqrt(z) -
                      polylog(s,
                              polar_lift(-1) * sqrt(z)) / sqrt(z)))
    assert myexpand(lerchphi(z, s, 2), -1 / z + polylog(s, z) / z**2)
    assert myexpand(lerchphi(z, s, S(3) / 2), None)
    assert myexpand(lerchphi(z, s, S(7) / 3), None)
    assert myexpand(lerchphi(z, s, -S(1) / 3), None)
    assert myexpand(lerchphi(z, s, -S(5) / 2), None)

    # hurwitz zeta reduction
    assert myexpand(lerchphi(-1, s, a),
                    2**(-s) * zeta(s, a / 2) - 2**(-s) * zeta(s, (a + 1) / 2))
    assert myexpand(lerchphi(I, s, a), None)
    assert myexpand(lerchphi(-I, s, a), None)
    assert myexpand(lerchphi(exp(2 * I * pi / 5), s, a), None)
Example #13
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == r'f{\left (x \right )}'
    assert latex(f) == r'f'

    g = Function('g')
    assert latex(g(x, y)) == r'g{\left (x,y \right )}'
    assert latex(g) == r'g'

    h = Function('h')
    assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}'
    assert latex(h) == r'h'

    Li = Function('Li')
    assert latex(Li) == r'\operatorname{Li}'
    assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}'

    beta = Function('beta')

    # not to be confused with the beta function
    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(beta) == r"\beta"

    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(
        FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(
        polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}', latex(Chi(x)**2)

    assert latex(
        jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(
        gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(
        chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(
        chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    theta = Symbol("theta", real=True)
    phi = Symbol("phi", real=True)
    assert latex(Ynm(n,m,theta,phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
    assert latex(Znm(n,m,theta,phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(
        0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"

    assert latex(totient(n)) == r'\phi\left( n \right)'

    # some unknown function name should get rendered with \operatorname
    fjlkd = Function('fjlkd')
    assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}'
    # even when it is referred to without an argument
    assert latex(fjlkd) == r'\operatorname{fjlkd}'
Example #14
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1)+exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
    r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
    r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2,inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2,inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2),inv_trig_style="power",fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2,k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3,k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x+y)) == r"\Re {\left (x + y \right )}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x,y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'
Example #15
0
def test_lerchphi_expansion():
    assert myexpand(lerchphi(1, s, a), zeta(s, a))
    assert myexpand(lerchphi(z, s, 1), polylog(s, z) / z)

    # direct summation
    assert myexpand(lerchphi(z, -1, a), a / (1 - z) + z / (1 - z) ** 2)
    assert myexpand(lerchphi(z, -3, a), None)
    # polylog reduction
    assert myexpand(
        lerchphi(z, s, S(1) / 2),
        2 ** (s - 1) * (polylog(s, sqrt(z)) / sqrt(z) - polylog(s, polar_lift(-1) * sqrt(z)) / sqrt(z)),
    )
    assert myexpand(lerchphi(z, s, 2), -1 / z + polylog(s, z) / z ** 2)
    assert myexpand(lerchphi(z, s, S(3) / 2), None)
    assert myexpand(lerchphi(z, s, S(7) / 3), None)
    assert myexpand(lerchphi(z, s, -S(1) / 3), None)
    assert myexpand(lerchphi(z, s, -S(5) / 2), None)

    # hurwitz zeta reduction
    assert myexpand(lerchphi(-1, s, a), 2 ** (-s) * zeta(s, a / 2) - 2 ** (-s) * zeta(s, (a + 1) / 2))
    assert myexpand(lerchphi(I, s, a), None)
    assert myexpand(lerchphi(-I, s, a), None)
    assert myexpand(lerchphi(exp(2 * I * pi / 5), s, a), None)
Example #16
0
def test_lerchphi_expansion():
    assert myexpand(lerchphi(1, s, a), zeta(s, a))
    assert myexpand(lerchphi(z, s, 1), polylog(s, z) / z)

    # direct summation
    assert myexpand(lerchphi(z, -1, a), a / (1 - z) + z / (1 - z)**2)
    assert myexpand(lerchphi(z, -3, a), None)
    # polylog reduction
    assert myexpand(
        lerchphi(z, s, S.Half),
        2**(s - 1) * (polylog(s, sqrt(z)) / sqrt(z) -
                      polylog(s,
                              polar_lift(-1) * sqrt(z)) / sqrt(z)))
    assert myexpand(lerchphi(z, s, 2), -1 / z + polylog(s, z) / z**2)
    assert myexpand(lerchphi(z, s, Rational(3, 2)), None)
    assert myexpand(lerchphi(z, s, Rational(7, 3)), None)
    assert myexpand(lerchphi(z, s, Rational(-1, 3)), None)
    assert myexpand(lerchphi(z, s, Rational(-5, 2)), None)

    # hurwitz zeta reduction
    assert myexpand(lerchphi(-1, s, a),
                    2**(-s) * zeta(s, a / 2) - 2**(-s) * zeta(s, (a + 1) / 2))
    assert myexpand(lerchphi(I, s, a), None)
    assert myexpand(lerchphi(-I, s, a), None)
    assert myexpand(lerchphi(exp(I * pi * Rational(2, 5)), s, a), None)
Example #17
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == r'f{\left (x \right )}'
    assert latex(f) == r'f'

    g = Function('g')
    assert latex(g(x, y)) == r'g{\left (x,y \right )}'
    assert latex(g) == r'g'

    h = Function('h')
    assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}'
    assert latex(h) == r'h'

    Li = Function('Li')
    assert latex(Li) == r'\operatorname{Li}'
    assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}'

    beta = Function('beta')

    # not to be confused with the beta function
    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(beta) == r"\beta"

    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,
                                  k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma{\left(x \right)}"
    w = Wild('w')
    assert latex(gamma(w)) == r"\Gamma{\left(w \right)}"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(Order(x, x)) == r"\mathcal{O}\left(x\right)"
    assert latex(Order(x, x, 0)) == r"\mathcal{O}\left(x\right)"
    assert latex(Order(x, x,
                       oo)) == r"\mathcal{O}\left(x; x\rightarrow\infty\right)"
    assert latex(
        Order(x, x, y)
    ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow0\right)"
    assert latex(
        Order(x, x, y, 0)
    ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow0\right)"
    assert latex(
        Order(x, x, y, oo)
    ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow\infty\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x,
                         y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'
    assert latex(Chi(x)) == r'\operatorname{Chi}{\left (x \right )}'

    assert latex(jacobi(n, a, b,
                        x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(
        n, a, b,
        x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(gegenbauer(n, a,
                            x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(
        n, a,
        x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(chebyshevt(n,
                            x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(chebyshevu(n,
                            x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_legendre(n, a,
                                x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(
        n, a,
        x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_laguerre(n, a,
                                x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(
        n, a,
        x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    theta = Symbol("theta", real=True)
    phi = Symbol("phi", real=True)
    assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
    assert latex(
        Ynm(n, m, theta,
            phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
    assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
    assert latex(
        Znm(n, m, theta,
            phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0)**
                 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"

    assert latex(totient(n)) == r'\phi\left( n \right)'

    # some unknown function name should get rendered with \operatorname
    fjlkd = Function('fjlkd')
    assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}'
    # even when it is referred to without an argument
    assert latex(fjlkd) == r'\operatorname{fjlkd}'