def test_specfun(): n = Symbol('n') for f in [besselj, bessely, besseli, besselk]: assert octave_code(f(n, x)) == f.__name__ + '(n, x)' assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)' assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)' assert octave_code(airyai(x)) == 'airy(0, x)' assert octave_code(airyaiprime(x)) == 'airy(1, x)' assert octave_code(airybi(x)) == 'airy(2, x)' assert octave_code(airybiprime(x)) == 'airy(3, x)' assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2' assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
def test_trigfun(): for f in ( sin, cos, tan, cot, sec, csc, asin, acos, acot, atan, asec, acsc, sinh, cosh, tanh, coth, csch, sech, asinh, acosh, atanh, acoth, asech, acsch, ): assert octave_code(f(x) == f.__name__ + "(x)")
def test_specfun(): n = Symbol('n') for f in [besselj, bessely, besseli, besselk]: assert octave_code(f(n, x)) == f.__name__ + '(n, x)' assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)' assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)' assert octave_code(airyai(x)) == 'airy(0, x)' assert octave_code(airyaiprime(x)) == 'airy(1, x)' assert octave_code(airybi(x)) == 'airy(2, x)' assert octave_code(airybiprime(x)) == 'airy(3, x)' assert octave_code(jn( n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2' assert octave_code(yn( n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
def expressionToCode(expression, language): '''Converts a SymPy Expression to a line of code in the target language''' if (language == "python"): return sympy.pycode(expression) elif (language == "javascript" or language == "typescript"): return sympy.jscode(expression) elif (language == "c"): return sympy.ccode(expression) elif (language == "cpp"): return sympy.cxxcode(expression) elif (language == "r"): return sympy.rcode(expression) elif (language == "fortran"): return sympy.fcode(expression) elif (language == "mathematica"): return sympy.mathematica_code(expression) elif (language == "matlab" or language == "octave"): return sympy.octave_code(expression) elif (language == "rust"): return sympy.rust_code(expression)
def test_specfun(): n = Symbol('n') for f in [besselj, bessely, besseli, besselk]: assert octave_code(f(n, x)) == f.__name__ + '(n, x)' assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)' assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)' assert octave_code(airyai(x)) == 'airy(0, x)' assert octave_code(airyaiprime(x)) == 'airy(1, x)' assert octave_code(airybi(x)) == 'airy(2, x)' assert octave_code(airybiprime(x)) == 'airy(3, x)' assert octave_code(uppergamma(n, x)) == 'gammainc(x, n, \'upper\')' assert octave_code(lowergamma(n, x)) == 'gammainc(x, n, \'lower\')' assert octave_code(jn( n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2' assert octave_code(yn( n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2' assert octave_code(LambertW(x)) == 'lambertw(x)' assert octave_code(LambertW(x, n)) == 'lambertw(n, x)'
def test_automatic_rewrite(): assert octave_code(Li(x)) == 'logint(x) - logint(2)' assert octave_code(erf2(x, y)) == '-erf(x) + erf(y)'
def test_zeta_printing_issue_14820(): assert octave_code(zeta(x)) == 'zeta(x)' assert octave_code(zeta(x, y)) == '% Not supported in Octave:\n% zeta\nzeta(x, y)'
def test_specfun(): n = Symbol('n') for f in [besselj, bessely, besseli, besselk]: assert octave_code(f(n, x)) == f.__name__ + '(n, x)' for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma): assert octave_code(f(x)) == f.__name__ + '(x)' assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)' assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)' assert octave_code(airyai(x)) == 'airy(0, x)' assert octave_code(airyaiprime(x)) == 'airy(1, x)' assert octave_code(airybi(x)) == 'airy(2, x)' assert octave_code(airybiprime(x)) == 'airy(3, x)' assert octave_code(uppergamma(n, x)) == 'gammainc(x, n, \'upper\')' assert octave_code(lowergamma(n, x)) == 'gammainc(x, n, \'lower\')' assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2' assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2' assert octave_code(LambertW(x)) == 'lambertw(x)' assert octave_code(LambertW(x, n)) == 'lambertw(n, x)'
def test_trigfun(): for f in (sin, cos, tan, cot, sec, csc, asin, acos, acot, atan, asec, acsc, sinh, cosh, tanh, coth, csch, sech, asinh, acosh, atanh, acoth, asech, acsch): assert octave_code(f(x) == f.__name__ + '(x)')
def test_specfun(): n = Symbol("n") for f in [besselj, bessely, besseli, besselk]: assert octave_code(f(n, x)) == f.__name__ + "(n, x)" for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma): assert octave_code(f(x)) == f.__name__ + "(x)" assert octave_code(hankel1(n, x)) == "besselh(n, 1, x)" assert octave_code(hankel2(n, x)) == "besselh(n, 2, x)" assert octave_code(airyai(x)) == "airy(0, x)" assert octave_code(airyaiprime(x)) == "airy(1, x)" assert octave_code(airybi(x)) == "airy(2, x)" assert octave_code(airybiprime(x)) == "airy(3, x)" assert octave_code(uppergamma(n, x)) == "(gammainc(x, n, 'upper').*gamma(n))" assert octave_code(lowergamma(n, x)) == "(gammainc(x, n).*gamma(n))" assert octave_code(z**lowergamma(n, x)) == "z.^(gammainc(x, n).*gamma(n))" assert octave_code(jn( n, x)) == "sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2" assert octave_code(yn( n, x)) == "sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2" assert octave_code(LambertW(x)) == "lambertw(x)" assert octave_code(LambertW(x, n)) == "lambertw(n, x)"
lambda expr, **kw: sp.cxxcode(expr, user_functions=_ufns, **kw), 'rust': lambda expr, **kw: sp.rust_code(expr, user_functions=_ufns, **kw), 'fortran': lambda expr, **kw: sp.fcode(expr, standard=95, user_functions=_ufns, **kw), 'js': lambda expr, **kw: sp.jscode(expr, user_functions=_ufns, **kw), 'r': lambda expr, **kw: sp.rcode(expr, user_functions=_ufns, **kw), 'julia': lambda expr, **kw: sp.julia_code(expr, user_functions=_ufns, **kw), 'mathematica': lambda expr, assign_to=None, **kw: sp.mathematica_code( expr, user_functions=_ufns, **kw), 'octave': lambda expr, **kw: sp.octave_code(expr, user_functions=_ufns, **kw), } def to_code(syexpr, dialect, assign_to='y', **kw): ''' Shorthand for converting the resulting Sympy expression to code in various languages. Args: dialect (str): The target language. Can be one of: 'c', 'cxx', 'rust', 'fortran', 'js', 'r', 'julia', 'mathematica', 'octave'. Kwargs: