Example #1
0
def my_compare(a, b):
   main_var = s
   p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3")
   r_a = a.match(p1 * s**p3)
   r_b = b.match(p1 * s**p3)
   if r_a is not None and r_b is not None:
       c = Basic.compare(r_a[p3], r_b[p3])
       if c!=0:
           return c

   return Basic._compare_pretty(a,b)
Example #2
0
 def __new__(cls, dimension):
     dimension = sympify(dimension)
     r = cls.eval(dimension)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, dimension, **{'commutative': False})
     return obj
Example #3
0
 def __new__(cls, dimension):
     dimension = sympify(dimension)
     r = cls.eval(dimension)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, dimension)
     return obj
Example #4
0
def sample2d(f, x_args):
    """
    Samples a 2d function f over specified intervals and returns two
    arrays (X, Y) suitable for plotting with matlab (matplotlib)
    syntax. See examples\mplot2d.py.

    f is a function of one variable, such as x**2.
    x_args is an interval given in the form (var, min, max, n)
    """
    try:
        f = Basic.sympify(f)
    except:
        raise ValueError("f could not be interpretted as a SymPy function")
    try:
        x, x_min, x_max, x_n = x_args
    except:
        raise ValueError("x_args must be a tuple of the form (var, min, max, n)")

    x_l = float(x_max - x_min)
    x_d = x_l/float(x_n)
    X = arange(float(x_min), float(x_max)+x_d, x_d)

    Y = empty(len(X))
    for i in range(len(X)):
        try:
            Y[i] = float(f.subs(x, X[i]))
        except:
            Y[i] = None
    return X, Y
Example #5
0
 def __new__(cls, sym, dist):
     sym = sympify(sym)
     if isinstance(dist, SingleContinuousDistribution):
         return SingleContinuousPSpace(sym, dist)
     if isinstance(dist, SingleDiscreteDistribution):
         return SingleDiscretePSpace(sym, dist)
     return Basic.__new__(cls, sym, dist)
    def __new__ (cls, arg, **options):
#        print "Inverse(", arg, ")"
#        print INVERTIBLE
        if isinstance(arg, Inverse):
            return arg.args[0]
        if arg.is_Number:
            return 1 / arg

        arg_rank = expr_rank(arg)
        if arg_rank == 1:
            raise NotInvertibleError

        if is_one(arg):
            return arg
        if is_zero(arg):
            raise NotInvertibleError

        # FIXME: Funky case trying to catch lower triangular or diagonal
        #        muls like T(P_0)*A*P_0
        if arg in INVERTIBLE:
            pass
        elif isinstance(arg, TensorExpr) and not arg.has_inverse:
            raise NotInvertibleError
        elif isinstance(arg, Mul):
            if arg.args[0] == S(-1):
                return - Inverse(reduce(operator.mul, arg.args[1:]))
        if not expr_invertible(arg):
            raise NotInvertibleError
        options['commutative'] = arg.is_commutative
        return Basic.__new__(cls, arg, **options)
Example #7
0
 def __new__(cls, i, j):
     i, j = map(sympify, (i, j))
     r = cls.canonize(i, j)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, i, j, commutative=True)
     return obj
    def __new__(cls, arg0, arg1, **options):
        new_args = [arg0, arg1]



        #check for T(x)*y and T(x)*A*y
        arg_list = list(arg0.args) + list(arg1.args)
        if len(arg_list) < 3 and \
            all(map(lambda x: isinstance(x, TensorExpr), arg_list)):
            txy = None
            A = None
            if isinstance(arg0, Transpose):
                if isinstance(arg1, Mul) and len(arg1.args) <= 2:
                    txy = [arg0.args[0]] + [arg1.args[-1]]
                    if len(arg1.args) == 2:
                        A = arg1.args[0]
            elif isinstance(arg0, Mul) and len(arg1.args) <= 2:
                if isinstance(arg0.args[0], Transpose) and isinstance(arg1, Tensor):
                    txy = [arg0.args[0].args[0], arg1]
                    if len(arg0.args) == 2:
                        A = arg0.args[1]
            if txy:
                stxy = sorted(txy, Basic.compare)
                if txy != stxy:
                    if not A:
                        return Inner(Transpose(stxy[0]), stxy[1])
                    if A and A.is_symmetric:
                        return Inner(Transpose(stxy[0]) * A, stxy[1])

#        if expr_rank(arg0) != 1 and expr_rank(arg1) != 1:
#            return Mul(arg0, arg1)
#        for n in xrange(len(new_args)):
#            if isinstance(new_args[n], Transpose):
#                new_args[n] = new_args[n].args[0]
        return Basic.__new__(cls, *new_args, **options)
Example #9
0
 def _new(cls, *args, **kwargs):
     if len(args)==1 and isinstance(args[0], ImmutableMatrix):
         return args[0]
     rows, cols, mat = MatrixBase._handle_creation_inputs(*args, **kwargs)
     shape = Tuple(rows, cols)
     mat = Tuple(*mat)
     return Basic.__new__(cls, shape, mat)
Example #10
0
 def __new__(cls, arg):
     arg = sympify(arg)
     r = cls.canonize(arg)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, arg)
     return obj
Example #11
0
    def __new__(cls, iterable=None, shape=None, **kwargs):
        from sympy.utilities.iterables import flatten

        shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
        shape = Tuple(*map(_sympify, shape))
        loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else 0

        # Sparse array:
        if isinstance(flat_list, (dict, Dict)):
            sparse_array = Dict(flat_list)
        else:
            sparse_array = {}
            for i, el in enumerate(flatten(flat_list)):
                if el != 0:
                    sparse_array[i] = _sympify(el)

        sparse_array = Dict(sparse_array)

        self = Basic.__new__(cls, sparse_array, shape, **kwargs)
        self._shape = shape
        self._rank = len(shape)
        self._loop_size = loop_size
        self._sparse_array = sparse_array

        return self
Example #12
0
 def __new__(cls, mat):
     if not isinstance(mat, Matrix):
         mat = Matrix(mat)
     data = Tuple(*mat.mat)
     shape = Tuple(*sympify(mat.shape))
     obj = Basic.__new__(cls, data, shape)
     obj.mat = mat
     return obj
Example #13
0
 def _new(cls, *args, **kwargs):
     if len(args) == 1 and isinstance(args[0], ImmutableMatrix):
         return args[0]
     rows, cols, flat_list = MatrixBase._handle_creation_inputs(*args, **kwargs)
     rows = Integer(rows)
     cols = Integer(cols)
     mat = Tuple(*flat_list)
     return Basic.__new__(cls, rows, cols, mat)
Example #14
0
 def __new__(cls, M):
     if not isinstance(M, Matrix):
         M = Matrix(M)
     data = Tuple(*M._mat)
     shape = Tuple(*sympify(M.shape))
     obj = Basic.__new__(cls, data, shape)
     obj._mat = M
     return obj
Example #15
0
    def __new__(cls, mat):
        if not mat.is_Matrix:
            raise TypeError("input to Trace, %s, is not a matrix" % str(mat))

        if not mat.is_square:
            raise ShapeError("Trace of a non-square matrix")

        return Basic.__new__(cls, mat)
Example #16
0
    def __new__(cls, *args):
        # args should be a tuple - a variable length argument list
        obj = Basic.__new__(cls, *args)
        obj._circuit = Mul(*args)
        obj._rules = generate_gate_rules(args)
        obj._eq_ids = generate_equivalent_ids(args)

        return obj
Example #17
0
 def __new__(cls, bra, ket):
     assert isinstance(bra, FockStateBra), 'must be a bra'
     assert isinstance(ket, FockStateKet), 'must be a key'
     r = cls.canonize(bra, ket)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, *(bra, ket), **dict(commutative=True))
     return obj
Example #18
0
    def __new__(cls, mat):
        if not mat.is_Matrix:
            raise TypeError("Input to Determinant, %s, not a matrix" % str(mat))

        if not mat.is_square:
            raise ShapeError("Det of a non-square matrix")

        return Basic.__new__(cls, mat)
Example #19
0
 def set_v_max(self, v_max):
     if v_max is None:
         self._v_max = None
         return
     try:
         self._v_max = Basic.sympify(v_max)
         float(self._v_max.evalf())
     except:
         raise ValueError("v_max could not be interpreted as a number.")
Example #20
0
    def __new__(cls, mat):

        if not mat.is_Matrix:
            return mat

        try:
            return mat._eval_transpose()
        except (AttributeError, NotImplementedError):
            return Basic.__new__(cls, mat)
Example #21
0
 def set_v_min(self, v_min):
     if v_min is None:
         self._v_min = None
         return
     try:
         self._v_min = Basic.sympify(v_min)
         float(self._v_min.evalf())
     except:
         raise ValueError("v_min could not be interpreted as a number.")
Example #22
0
 def __new__(cls, dist):
     if not isinstance(dist, (ContinuousDistribution, DiscreteDistribution)):
         raise ValueError(filldedent('''CompoundDistribution can only be
          initialized from ContinuousDistribution or DiscreteDistribution
          '''))
     _args = dist.args
     if not any([isinstance(i, RandomSymbol) for i in _args]):
         return dist
     return Basic.__new__(cls, dist)
Example #23
0
 def __new__(cls,dist, rvs):
     if not all([isinstance(rv, (Indexed, RandomSymbol))] for rv in rvs):
         raise ValueError(filldedent('''Marginal distribution can be
          intitialised only in terms of random variables or indexed random
          variables'''))
     rvs = Tuple.fromiter(rv for rv in rvs)
     if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0:
         return dist
     return Basic.__new__(cls, dist, rvs)
Example #24
0
	def __new__(cls, num, denom=None):
		obj = Basic.__new__(cls)
		if denom is None:
			if isinstance(num, str):
				obj.p, obj.q = parse_rational(num)
		else:
			obj.p = num
			obj.q = denom
		return obj
Example #25
0
 def __new__(cls, pspace, symbol=None):
     if symbol is None:
         # Allow single arg, representing pspace == PSpace()
         pspace, symbol = PSpace(), pspace
     if not isinstance(symbol, Symbol):
         raise TypeError("symbol should be of type Symbol")
     if not isinstance(pspace, PSpace):
         raise TypeError("pspace variable should be of type PSpace")
     return Basic.__new__(cls, pspace, symbol)
Example #26
0
def test_expr_fns():
    from sympy.strategies.rl import rebuild
    from sympy import Add
    x, y = map(Symbol, 'xy')
    expr = x + y**3
    e = bottom_up(lambda x: x + 1, expr_fns)(expr)
    b = bottom_up(lambda x: Basic.__new__(Add, x, 1), basic_fns)(expr)

    assert rebuild(b) == e
Example #27
0
 def __new__(cls, mat):
     try:
         return mat._eval_adjoint()
     except (AttributeError, NotImplementedError):
         pass
     try:
         return mat.adjoint()
     except (AttributeError, NotImplementedError):
         pass
     return Basic.__new__(cls, mat)
Example #28
0
 def _new(cls, *args, **kwargs):
     s = MutableSparseMatrix(*args)
     rows = Integer(s.rows)
     cols = Integer(s.cols)
     mat = Dict(s._smat)
     obj = Basic.__new__(cls, rows, cols, mat)
     obj.rows = s.rows
     obj.cols = s.cols
     obj._smat = s._smat
     return obj
Example #29
0
 def __new__(cls, density):
     density = Dict(density)
     for k in density.values():
         k_sym = sympify(k)
         if fuzzy_not(fuzzy_and((k_sym.is_nonnegative, (k_sym - 1).is_nonpositive))):
             raise ValueError("Probability at a point must be between 0 and 1.")
     sum_sym = sum(density.values())
     if sum_sym != 1:
         raise ValueError("Total Probability must be equal to 1.")
     return Basic.__new__(cls, density)
Example #30
0
 def __new__(cls, sym, dist):
     if isinstance(dist, SingleContinuousDistribution):
         return SingleContinuousPSpace(sym, dist)
     if isinstance(dist, SingleDiscreteDistribution):
         return SingleDiscretePSpace(sym, dist)
     if isinstance(sym, string_types):
         sym = Symbol(sym)
     if not isinstance(sym, Symbol):
         raise TypeError("s should have been string or Symbol")
     return Basic.__new__(cls, sym, dist)
Example #31
0
 def __new__(cls, s, distribution):
     if isinstance(s, str):
         s = Symbol(s)
     if not isinstance(s, Symbol):
         raise TypeError("s should have been string or Symbol")
     return Basic.__new__(cls, s, distribution)
Example #32
0
 def __new__(cls, base, exp):
     return Basic.__new__(cls, _sympify(base), _sympify(exp))
Example #33
0
 def __new__(cls, rows, cols, lamda):
     rows, cols = sympify(rows), sympify(cols)
     return Basic.__new__(cls, rows, cols, lamda)
Example #34
0
def test_zero_ints():
    expr = Basic(2, Basic(5, 3), 8)
    expected = set([Basic(0, Basic(0, 0), 0)])

    brl = canon(posdec)
    assert set(brl(expr)) == expected
Example #35
0
def test_top_down_big_tree():
    expr     = Basic(1, Basic(2), Basic(3, Basic(4), 5))
    expected = Basic(2, Basic(3), Basic(4, Basic(5), 6))
    brl = top_down(inc)

    assert set(brl(expr)) == set([expected])
Example #36
0
def test_top_down_easy():
    expr     = Basic(1, 2)
    expected = Basic(2, 3)
    brl = top_down(inc)

    assert set(brl(expr)) == set([expected])
Example #37
0
 def __new__(cls, lamda, base_set):
     return Basic.__new__(cls, lamda, base_set)
Example #38
0
File: drv.py Project: yyht/sympy
 def __new__(cls, pdf, set=S.Integers):
     return Basic.__new__(cls, pdf, set)
Example #39
0
 def __new__(cls, interval):
     if not isinstance(interval, Interval):
         raise TypeError('L2 interval must be an Interval instance: %r' %
                         interval)
     obj = Basic.__new__(cls, interval)
     return obj
 def __new__(cls, symbol, set):
     if not isinstance(set, FiniteSet):
         set = FiniteSet(*set)
     return Basic.__new__(cls, symbol, set)
Example #41
0
 def __new__(cls, fulldomain, condition):
     condition = condition.xreplace(
         dict((rs, rs.symbol) for rs in random_symbols(condition)))
     return Basic.__new__(cls, fulldomain, condition)
Example #42
0
 def __new__(cls, symbol, set):
     assert symbol.is_Symbol
     return Basic.__new__(cls, symbol, set)
Example #43
0
 def __hash__(self):
     return Basic.__hash__(self)
Example #44
0
    def __new__(cls, base_dims, derived_dims=[], dimensional_dependencies={}, name=None, descr=None):
        dimensional_dependencies = dict(dimensional_dependencies)

        if (name is not None) or (descr is not None):
            SymPyDeprecationWarning(
                deprecated_since_version="1.2",
                issue=13336,
                useinstead="do not define a `name` or `descr`",
            ).warn()

        def parse_dim(dim):
            if isinstance(dim, str):
                dim = Dimension(Symbol(dim))
            elif isinstance(dim, Dimension):
                pass
            elif isinstance(dim, Symbol):
                dim = Dimension(dim)
            else:
                raise TypeError("%s wrong type" % dim)
            return dim

        base_dims = [parse_dim(i) for i in base_dims]
        derived_dims = [parse_dim(i) for i in derived_dims]

        for dim in base_dims:
            dim = dim.name
            if (dim in dimensional_dependencies
                and (len(dimensional_dependencies[dim]) != 1 or
                dimensional_dependencies[dim].get(dim, None) != 1)):
                raise IndexError("Repeated value in base dimensions")
            dimensional_dependencies[dim] = Dict({dim: 1})

        def parse_dim_name(dim):
            if isinstance(dim, Dimension):
                return dim.name
            elif isinstance(dim, str):
                return Symbol(dim)
            elif isinstance(dim, Symbol):
                return dim
            else:
                raise TypeError("unrecognized type %s for %s" % (type(dim), dim))

        for dim in dimensional_dependencies.keys():
            dim = parse_dim(dim)
            if (dim not in derived_dims) and (dim not in base_dims):
                derived_dims.append(dim)

        def parse_dict(d):
            return Dict({parse_dim_name(i): j for i, j in d.items()})

        # Make sure everything is a SymPy type:
        dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in
                                    dimensional_dependencies.items()}

        for dim in derived_dims:
            if dim in base_dims:
                raise ValueError("Dimension %s both in base and derived" % dim)
            if dim.name not in dimensional_dependencies:
                # TODO: should this raise a warning?
                dimensional_dependencies[dim.name] = Dict({dim.name: 1})

        base_dims.sort(key=default_sort_key)
        derived_dims.sort(key=default_sort_key)

        base_dims = Tuple(*base_dims)
        derived_dims = Tuple(*derived_dims)
        dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()})
        obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies)
        return obj
Example #45
0
 def __new__(cls, *args):
     r = cls.eval(args)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, *args)
     return obj
Example #46
0
 def __new__(cls, pspace, symbol):
     if not isinstance(symbol, Symbol):
         raise TypeError("symbol should be of type Symbol")
     if not isinstance(pspace, PSpace):
         raise TypeError("pspace variable should be of type PSpace")
     return Basic.__new__(cls, pspace, symbol)
Example #47
0
 def _eval_derivative_n_times(self, s, n):
     return Basic._eval_derivative_n_times(self, s, n)
Example #48
0
 def __new__(cls):
     obj = Basic.__new__(cls)
     return obj
Example #49
0
def test_arguments():
    """Functions accepting `Point` objects in `geometry`
    should also accept tuples and lists and
    automatically convert them to points."""

    singles2d = ((1, 2), [1, 2], Point(1, 2))
    singles2d2 = ((1, 3), [1, 3], Point(1, 3))
    doubles2d = cartes(singles2d, singles2d2)
    p2d = Point2D(1, 2)
    singles3d = ((1, 2, 3), [1, 2, 3], Point(1, 2, 3))
    doubles3d = subsets(singles3d, 2)
    p3d = Point3D(1, 2, 3)
    singles4d = ((1, 2, 3, 4), [1, 2, 3, 4], Point(1, 2, 3, 4))
    doubles4d = subsets(singles4d, 2)
    p4d = Point(1, 2, 3, 4)

    # test 2D
    test_single = [
        'distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint',
        'intersection', 'dot', 'equals', '__add__', '__sub__'
    ]
    test_double = ['is_concyclic', 'is_collinear']
    for p in singles2d:
        Point2D(p)
    for func in test_single:
        for p in singles2d:
            getattr(p2d, func)(p)
    for func in test_double:
        for p in doubles2d:
            getattr(p2d, func)(*p)

    # test 3D
    test_double = ['is_collinear']
    for p in singles3d:
        Point3D(p)
    for func in test_single:
        for p in singles3d:
            getattr(p3d, func)(p)
    for func in test_double:
        for p in doubles3d:
            getattr(p3d, func)(*p)

    # test 4D
    test_double = ['is_collinear']
    for p in singles4d:
        Point(p)
    for func in test_single:
        for p in singles4d:
            getattr(p4d, func)(p)
    for func in test_double:
        for p in doubles4d:
            getattr(p4d, func)(*p)

    # test evaluate=False for ops
    x = Symbol('x')
    a = Point(0, 1)
    assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False)
    a = Point(0, 1)
    assert a / 10.0 == Point(0, 0.1, evaluate=False)
    a = Point(0, 1)
    assert a * 10.0 == Point(0.0, 10.0, evaluate=False)

    # test evaluate=False when changing dimensions
    u = Point(.1, .2, evaluate=False)
    u4 = Point(u, dim=4, on_morph='ignore')
    assert u4.args == (.1, .2, 0, 0)
    assert all(i.is_Float for i in u4.args[:2])
    # and even when *not* changing dimensions
    assert all(i.is_Float for i in Point(u).args)

    # never raise error if creating an origin
    assert Point(dim=3, on_morph='error')

    # raise error with unmatched dimension
    raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error'))
    # test unknown on_morph
    raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown'))
    # test invalid expressions
    raises(TypeError, lambda: Point(Basic(), Basic()))
Example #50
0
 def __new__(cls, *args):
     r = cls.eval(args)
     if isinstance(r, Basic):
         return r
     return Basic.__new__(cls, *r)
Example #51
0
File: frv.py Project: zalois/sympy
 def __new__(cls, *args):
     args = list(map(sympify, args))
     return Basic.__new__(cls, *args)
Example #52
0
File: frv.py Project: zalois/sympy
 def __new__(cls, symbol, set):
     if not isinstance(set, FiniteSet) and \
         not isinstance(set, Intersection):
         set = FiniteSet(*set)
     return Basic.__new__(cls, symbol, set)
Example #53
0
 def __new__(cls, density):
     density = Dict(density)
     return Basic.__new__(cls, density)
Example #54
0
def test_construct():
    expr     = Compound(Basic, (1, 2, 3))
    expected = Basic(1, 2, 3)
    assert construct(expr) == expected
Example #55
0
 def __new__(cls, sym, dim=None):
     sym, dim = _symbol_converter(sym), _sympify(dim)
     if dim.is_integer == False:
         raise ValueError("Dimension of the random matrices must be "
                          "integers, received %s instead." % (dim))
     return Basic.__new__(cls, sym, dim)
Example #56
0
def xlog(y: Basic, x: Symbol, base: Basic = 10):
    "For log plots on the x axis"
    return y.subs(x, 10**x)
Example #57
0
def test_sort_variable():
    vsort = Derivative._sort_variable_count

    def vsort0(*v, **kw):
        reverse = kw.get('reverse', False)
        return [
            i[0]
            for i in vsort([(i, 0) for i in (reversed(v) if reverse else v)])
        ]

    for R in range(2):
        assert vsort0(y, x, reverse=R) == [x, y]
        assert vsort0(f(x), x, reverse=R) == [x, f(x)]
        assert vsort0(f(y), f(x), reverse=R) == [f(x), f(y)]
        assert vsort0(g(x), f(y), reverse=R) == [f(y), g(x)]
        assert vsort0(f(x, y), f(x), reverse=R) == [f(x), f(x, y)]
        fx = f(x).diff(x)
        assert vsort0(fx, y, reverse=R) == [y, fx]
        fy = f(y).diff(y)
        assert vsort0(fy, fx, reverse=R) == [fx, fy]
        fxx = fx.diff(x)
        assert vsort0(fxx, fx, reverse=R) == [fx, fxx]
        assert vsort0(Basic(x), f(x), reverse=R) == [f(x), Basic(x)]
        assert vsort0(Basic(y), Basic(x), reverse=R) == [Basic(x), Basic(y)]
        assert vsort0(Basic(y, z), Basic(x),
                      reverse=R) == [Basic(x), Basic(y, z)]
        assert vsort0(fx, x, reverse=R) == [x, fx] if R else [fx, x]
        assert vsort0(Basic(x), x, reverse=R) == [x, Basic(x)
                                                  ] if R else [Basic(x), x]
        assert vsort0(Basic(f(x)), f(x), reverse=R) == [
            f(x), Basic(f(x))
        ] if R else [Basic(f(x)), f(x)]
        assert vsort0(Basic(x, z), Basic(x), reverse=R) == [
            Basic(x), Basic(x, z)
        ] if R else [Basic(x, z), Basic(x)]
    assert vsort([]) == []
    assert _aresame(vsort([(x, 1)]), [Tuple(x, 1)])
    assert vsort([(x, y), (x, z)]) == [(x, y + z)]
    assert vsort([(y, 1), (x, 1 + y)]) == [(x, 1 + y), (y, 1)]
    # coverage complete; legacy tests below
    assert vsort([(x, 3), (y, 2), (z, 1)]) == [(x, 3), (y, 2), (z, 1)]
    assert vsort([(h(x), 1), (g(x), 1), (f(x), 1)]) == [(f(x), 1), (g(x), 1),
                                                        (h(x), 1)]
    assert vsort([(z, 1), (y, 2), (x, 3), (h(x), 1), (g(x), 1),
                  (f(x), 1)]) == [(x, 3), (y, 2), (z, 1), (f(x), 1), (g(x), 1),
                                  (h(x), 1)]
    assert vsort([(x, 1), (f(x), 1), (y, 1), (f(y), 1)]) == [(x, 1), (y, 1),
                                                             (f(x), 1),
                                                             (f(y), 1)]
    assert vsort([(y, 1), (x, 2), (g(x), 1), (f(x), 1), (z, 1), (h(x), 1),
                  (y, 2), (x, 1)]) == [(x, 3), (y, 3), (z, 1), (f(x), 1),
                                       (g(x), 1), (h(x), 1)]
    assert vsort([(z, 1), (y, 1), (f(x), 1), (x, 1), (f(x), 1),
                  (g(x), 1)]) == [(x, 1), (y, 1), (z, 1), (f(x), 2), (g(x), 1)]
    assert vsort([(z, 1), (y, 2), (f(x), 1), (x, 2), (f(x), 2), (g(x), 1),
                  (z, 2), (z, 1), (y, 1), (x, 1)]) == [(x, 3), (y, 3), (z, 4),
                                                       (f(x), 3), (g(x), 1)]
    assert vsort(((y, 2), (x, 1), (y, 1), (x, 1))) == [(x, 2), (y, 3)]
    assert isinstance(vsort([(x, 3), (y, 2), (z, 1)])[0], Tuple)
    assert vsort([(x, 1), (f(x), 1), (x, 1)]) == [(x, 2), (f(x), 1)]
    assert vsort([(y, 2), (x, 3), (z, 1)]) == [(x, 3), (y, 2), (z, 1)]
    assert vsort([(h(y), 1), (g(x), 1), (f(x), 1)]) == [(f(x), 1), (g(x), 1),
                                                        (h(y), 1)]
    assert vsort([(x, 1), (y, 1), (x, 1)]) == [(x, 2), (y, 1)]
    assert vsort([(f(x), 1), (f(y), 1), (f(x), 1)]) == [(f(x), 2), (f(y), 1)]
    dfx = f(x).diff(x)
    self = [(dfx, 1), (x, 1)]
    assert vsort(self) == self
    assert vsort([(dfx, 1), (y, 1), (f(x), 1), (x, 1), (f(y), 1),
                  (x, 1)]) == [(y, 1), (f(x), 1), (f(y), 1), (dfx, 1), (x, 2)]
    dfy = f(y).diff(y)
    assert vsort([(dfy, 1), (dfx, 1)]) == [(dfx, 1), (dfy, 1)]
    d2fx = dfx.diff(x)
    assert vsort([(d2fx, 1), (dfx, 1)]) == [(dfx, 1), (d2fx, 1)]
Example #58
0
 def __new__(cls, pdf, set=Interval(-oo, oo)):
     return Basic.__new__(cls, pdf, set)
Example #59
0
 def __new__(cls, symbols, *args):
     symbols = FiniteSet(*symbols)
     return Basic.__new__(cls, symbols, *args)
Example #60
0
def test_simple_variables():
    rl = rewriterule(Basic(x, 1), Basic(x, 2), variables=(x, ))
    assert list(rl(Basic(3, 1))) == [Basic(3, 2)]

    rl = rewriterule(x**2, x**3, variables=(x, ))
    assert list(rl(y**2)) == [y**3]