def process_file(self, mel, speaker_index, speaker_index_2, notes, sess): datasets = "".join("_" + x.lower() for x in config.datasets) with h5py.File(config.stat_file, mode='r') as stat_file: max_feat = stat_file["feats_maximus"][()] + 0.001 min_feat = stat_file["feats_minimus"][()] - 0.001 mel = (mel - min_feat) / (max_feat - min_feat) notes = notes / np.round(max_feat[-2]) in_batches_mel, nchunks_in = utils.generate_overlapadd(mel) in_batches_notes, nchunks_in = utils.generate_overlapadd(notes) out_batches_mel = [] out_batches_f0 = [] out_batches_vuv = [] for in_batch_mel, in_batch_notes in zip(in_batches_mel, in_batches_notes): speaker = np.repeat(speaker_index, config.batch_size) speaker_2 = np.repeat(speaker_index_2, config.batch_size) feed_dict = {self.input_placeholder: in_batch_mel, self.speaker_labels:speaker,self.speaker_labels_1:speaker_2,\ self.notes_placeholder:in_batch_notes, self.is_train: False} mel, f0, vuv = sess.run([self.output, self.f0, self.vuv], feed_dict=feed_dict) out_batches_mel.append(mel) out_batches_f0.append(f0) out_batches_vuv.append(vuv) out_batches_mel = np.array(out_batches_mel) out_batches_f0 = np.array(out_batches_f0) out_batches_vuv = np.array(out_batches_vuv) out_batches_mel = utils.overlapadd(out_batches_mel, nchunks_in) out_batches_f0 = utils.overlapadd(out_batches_f0, nchunks_in) out_batches_vuv = utils.overlapadd(out_batches_vuv, nchunks_in) out_batches_mel = out_batches_mel[:, :-2] * ( max_feat[:-2] - min_feat[:-2]) + min_feat[:-2] out_batches_f0 = np.clip(out_batches_f0, 0.0, 1.0) * ( max_feat[-2] - min_feat[-2]) + min_feat[-2] out_batches_vuv = out_batches_vuv * (max_feat[-1] - min_feat[-1]) + min_feat[-1] out_batches_vuv = np.round(out_batches_vuv) return out_batches_mel, out_batches_f0, out_batches_vuv
def process_file(self, mel, speaker_index, speaker_index_2, sess): datasets = "".join("_"+x.lower() for x in config.datasets) with h5py.File(config.stat_file, mode='r') as stat_file: max_feat = stat_file["feats_maximus"][()] + 0.001 min_feat = stat_file["feats_minimus"][()] - 0.001 mel = (mel - min_feat)/(max_feat-min_feat) in_batches_mel, nchunks_in = utils.generate_overlapadd(mel) out_batches_mel = [] for in_batch_mel in in_batches_mel : speaker = np.repeat(np.expand_dims(speaker_index,0),config.batch_size, axis=0) speaker_2 = np.repeat(np.expand_dims(speaker_index_2,0),config.batch_size, axis=0) feed_dict = {self.input_placeholder: in_batch_mel[:,:,:-2], self.speaker_labels:speaker,self.speaker_labels_1:speaker_2, self.is_train: False} mel = sess.run(self.output, feed_dict=feed_dict) out_batches_mel.append(mel) out_batches_mel = np.array(out_batches_mel) out_batches_mel = utils.overlapadd(out_batches_mel,nchunks_in) out_batches_mel = out_batches_mel*(max_feat[:-2] - min_feat[:-2]) + min_feat[:-2] return out_batches_mel
def extract_feature(self, mel, sess): datasets = "".join("_"+x.lower() for x in config.datasets) mel = np.clip(mel, 0.0, 1.0) in_batches_mel, nchunks_in = utils.generate_overlapadd(mel) out_batches_mel = [] for in_batch_mel in in_batches_mel : feed_dict = {self.stft_placeholder: in_batch_mel, self.is_train: False} mel = sess.run(self.content_embedding_stft, feed_dict=feed_dict) out_batches_mel.append(mel) out_batches_mel = np.array(out_batches_mel) out_batches_mel = utils.overlapadd(out_batches_mel,nchunks_in) return out_batches_mel
def process_file(self, mel, sess): datasets = "".join("_"+x.lower() for x in config.datasets) with h5py.File(config.stat_file, mode='r') as stat_file: max_feat = stat_file["feats_maximus"][()] + 0.001 min_feat = stat_file["feats_minimus"][()] - 0.001 mel = np.clip(mel, 0.0, 1.0) in_batches_mel, nchunks_in = utils.generate_overlapadd(mel) out_batches_mel = [] out_batches_f0 = [] out_batches_vuv = [] for in_batch_mel in in_batches_mel : feed_dict = {self.stft_placeholder: in_batch_mel, self.stft_placeholder_1: in_batch_mel, self.is_train: False} mel, f0, vuv = sess.run([self.output_stft, self.f0, self.vuv], feed_dict=feed_dict) out_batches_mel.append(mel) out_batches_f0.append(f0) out_batches_vuv.append(vuv) out_batches_mel = np.array(out_batches_mel) out_batches_f0 = np.array(out_batches_f0) out_batches_vuv = np.array(out_batches_vuv) out_batches_mel = utils.overlapadd(out_batches_mel,nchunks_in) out_batches_f0 = utils.overlapadd(out_batches_f0,nchunks_in) out_batches_vuv = utils.overlapadd(out_batches_vuv,nchunks_in) out_batches_mel = out_batches_mel*(max_feat[:-2] - min_feat[:-2]) + min_feat[:-2] out_batches_f0 = out_batches_f0*(max_feat[-2] - min_feat[-2]) + min_feat[-2] out_batches_vuv = out_batches_vuv*(max_feat[-1] - min_feat[-1]) + min_feat[-1] out_batches_vuv = np.round(out_batches_vuv) return out_batches_mel, out_batches_f0, out_batches_vuv