def c4_bare_preprocess_fn(dataset, training=True, spm_path=None, copy_plaintext=True, sequence_length=None): """Returns a dataset that contains 'inputs' and 'targets' from C4.""" # Set target key to be equal to the text content. dataset = t5_processors.rekey(dataset, key_map={ 'targets': 'text', 'inputs': None }) # Vocabulary for tokenization. vocab = t5_spc_vocab.SentencePieceVocabulary( sentencepiece_model_file=spm_path or t5_utils.DEFAULT_SPM_PATH) feature = t5_utils.Feature(vocab) output_features = {'targets': feature, 'inputs': feature} # Tokenize the targets. dataset = t5_utils.encode_string_features(dataset, output_features, keys=output_features, copy_plaintext=copy_plaintext) # Preprocess the tokens - the exact preprocessors are set via gin. dataset = t5_processors.unsupervised(dataset, sequence_length=sequence_length, output_features=output_features) # Add EOS. dataset = add_eos_to_output_features(dataset, training) return dataset
def c4_bare_preprocess_fn(dataset, training=True, spm_path=None, copy_plaintext=True, sequence_length=None): """Returns a dataset that contains 'inputs' and 'targets' from C4.""" # Set target key to be equal to the text content. dataset = t5_processors.rekey(dataset, key_map={ 'targets': 'text', 'inputs': None }) # Vocabulary for tokenization. vocab = t5_spc_vocab.SentencePieceVocabulary( sentencepiece_model_file=spm_path or t5_utils.DEFAULT_SPM_PATH) feature = t5_data.Feature(vocab) output_features = {'targets': feature, 'inputs': feature} # Tokenize the targets. keys = output_features def encode_string_features_fn(features): """Encode all specified feature that are strings and return a dictionary. Args: features: a dictionary Returns: a dictionary """ ret = {} for k, v in features.items(): if k in keys and v.dtype == tf.string: if copy_plaintext: ret['%s_plaintext' % k] = v v = tf.cast(output_features[k].vocabulary.encode_tf(v), tf.int64) ret[k] = v return ret dataset = dataset.map(encode_string_features_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) # Preprocess the tokens - the exact preprocessors are set via gin. dataset = t5_processors.unsupervised(dataset, sequence_length=sequence_length, output_features=output_features) # Add EOS. dataset = add_eos_to_output_features(dataset, training) # Truncate and then pad the examples -- all examples have the same shape. dataset = truncate_dataset_on_len(dataset, training, sequence_length, True) dataset = pad_dataset_to_length(dataset, training, sequence_length) return dataset
def test_denoise_nested_decorators(self): """Test whether gin and utils.map_over_dataset decorators are compatible.""" bindings = """ preprocessors.unsupervised.preprocessors = [@preprocessors.denoise] preprocessors.denoise.noise_density = 0.15 preprocessors.denoise.noise_mask_fn = @preprocessors.iid_noise_mask preprocessors.denoise.inputs_fn = @noise_token_to_sentinel """ gin.parse_config(bindings) og_dataset = tf.data.Dataset.from_tensor_slices({'targets': [1, 2, 3]}) output_features = { 'targets': Feature(test_utils.sentencepiece_vocab()) } # Test denoise function when it is used as a gin-configurable of another # gin-configurable, prep.unsupervised. dataset = prep.unsupervised(og_dataset, output_features=output_features) self.assertIsInstance(dataset, tf.data.Dataset)