def dch(): dch = ta.donchian_channel_hband(close, n=20, fillna=False) dchi = ta.donchian_channel_hband_indicator(close, n=20, fillna=False) dcl = ta.donchian_channel_lband(close, n=20, fillna=False) dcli = ta.donchian_channel_lband_indicator(close, n=20, fillna=False) if close[-1] == dch[-1]: vot_status_dc = "DCH Signals is: Strong Sell" elif dch[-1] > close[-1] > dch[-1] - 2: vot_status_dc = "DCH Signals is: Sell" elif dcl[-1] == close[-1]: vot_status_dc = "DCH Signals is: Strong Buy" elif dcl[-1] < close[-1] <= dcl[-1] + 2: vot_status_dc = "DCH Signals is: Buy" else: vot_status_dc = "DCH Signals is: Hold" return vot_status_dc
def process_data(data): data['BB_5'] = ta.bollinger_mavg( data['CLOSE'], 5) #bollinger_moving average 5 trading periods data['BB_10'] = ta.bollinger_mavg( data['CLOSE'], 10) #bollinger_moving average 10 trading periods data['BB_20'] = ta.bollinger_mavg( data['CLOSE'], 20) # bollinger_moving average 20 periods data['ADX'] = ta.adx(data['HIGH'], data['LOW'], data['CLOSE'], 14) #Average Directional Index data['ATR'] = ta.average_true_range(data['HIGH'], data['LOW'], data['CLOSE'], 14) #Average True Range data['CCI'] = ta.cci(data['HIGH'], data['LOW'], data['CLOSE'], 14) #Commodity Channel Index data['DCH'] = ta.donchian_channel_hband( data['CLOSE']) #Donchian Channel High Band data['DCL'] = ta.donchian_channel_lband( data['CLOSE']) #Donchian Channel Low Band data['DPO'] = ta.dpo(data['CLOSE']) #Detrend Price Oscilator data['EMAf'] = ta.ema_fast( data['CLOSE']) #Expornential Moving Average fast data['EMAs'] = ta.ema_slow( data['CLOSE']) #Expornential Moving Average slow data['FI'] = ta.force_index( data['CLOSE'], data['VOLUME']) # Force Index(reveals the value of a trend) data['ICHa'] = ta.ichimoku_a(data['HIGH'], data['LOW']) #Ichimoku A data['ICHb'] = ta.ichimoku_b(data['HIGH'], data['LOW']) #Ichimoku B data['KC'] = ta.keltner_channel_central( data['HIGH'], data['LOW'], data['CLOSE']) #Keltner channel(KC) Central data['KST'] = ta.kst( data['CLOSE'] ) #KST Oscillator (KST) identify major stock market cycle junctures data['MACD'] = ta.macd( data['CLOSE']) # Moving Average convergence divergence data['OBV'] = ta.on_balance_volume_mean( data['CLOSE'], data['VOLUME']) # on_balance_volume_mean data['RSI'] = ta.rsi(data['CLOSE']) # Relative Strength Index (RSI) data['TRIX'] = ta.trix( data['CLOSE'] ) #Shows the percent rate of change of a triple exponentially smoothed moving average data['TSI'] = ta.tsi(data['CLOSE']) #True strength index (TSI) data['ROC1'] = (data['CLOSE'] - data['OPEN']) / data['OPEN'] data['RET'] = data['CLOSE'].pct_change() data['y'] = np.where(data['OPEN'] <= data['CLOSE'], 1, -1) data = data.dropna() return data
df["Close"]) ta_df['KCH'] = ta.keltner_channel_hband( df["High"], df["Low"], df["Close"]) ta_df['KCL'] = ta.keltner_channel_lband( df["High"], df["Low"], df["Close"]) ta_df['KCHI'] = ta.keltner_channel_hband_indicator(df["High"], df["Low"], df["Close"]) ta_df['KCLI'] = ta.keltner_channel_lband_indicator(df["High"], df["Low"], df["Close"]) ta_df['DCH'] = ta.donchian_channel_hband( df["Close"]) ta_df['DCL'] = ta.donchian_channel_lband( df["Close"]) ta_df['DCHI'] = ta.donchian_channel_hband_indicator(df["Close"]) ta_df['DCLI'] = ta.donchian_channel_lband_indicator(df["Close"]) ta_df['ADI'] = ta.acc_dist_index(df["High"], df["Low"], df["Close"], df["Volume BTC"]) ta_df['OBV'] = ta.on_balance_volume(df["Close"], df["Volume BTC"]) ta_df['OBVM'] = ta.on_balance_volume_mean( df["Close"], df["Volume BTC"]) ta_df['CMF'] = ta.chaikin_money_flow(df["High"],