Example #1
0
def get_edge_probability_and_rate(temporal_network):
    r"""
    For each edge compute the probability that it is active and the rate
    with which it is activated.

    Parameters
    ==========
    temporal_network : :class:`_tacoma.edge_lists`, :class:`_tacoma.edge_changes` or :class:`_tacoma.edge_trajectories`

    Returns
    =======
    p : numpy.ndarray
        The probability to be switched on for each observed edge of the network 
        (the remaining un-observed edges have probability p = 0).
    omega : numpy.ndarray
        The rate with which the observed edges are switched on 
        :math:`\omega = \left(\frac{1}{\tau^+} + \frac{1}{\tau^{-}}\right)^{-1}`
        (the remaining un-observed edges have rate :math:`\omega = 0`).
    """

    if type(temporal_network) in [ec, el, el_h, ec_h]:
        traj = tc.get_edge_trajectories(temporal_network)
        tmax = temporal_network.tmax
        if type(temporal_network) in [ec, ec_h]:
            t0 = temporal_network.t0
        else:
            t0 = temporal_network.t[0]
    elif type(temporal_network) == edge_trajectories:
        traj = temporal_network.trajectories
        tmax = temporal_network.tmax
        t0 = temporal_network.t0
    else:
        raise ValueError("Unknown type for temporal network:",
                         type(temporal_network))

    T = tmax - t0

    connection_probability = np.empty(len(traj))
    activity_rate = np.empty(len(traj))

    for iedge, entry in enumerate(traj):

        N_events = len(entry.time_pairs)
        if entry.time_pairs[0][0] == t0:
            N_events -= 1
        activity_rate[iedge] = N_events / T

        t_on = 0.0
        for interval in entry.time_pairs:
            t_on += interval[1] - interval[0]

        connection_probability[iedge] = t_on / T

    return connection_probability, activity_rate
Example #2
0
def get_edge_life_times(temporal_network):
    r"""
    For each edge compute the probability that it is active and the rate
    with which it is activated.

    Parameters
    ==========
    temporal_network : :class:`_tacoma.edge_lists`, :class:`_tacoma.edge_changes` or :class:`_tacoma.edge_trajectories`

    Returns
    =======
    p : numpy.ndarray
        The probability to be switched on for each observed edge of the network 
        (the remaining un-observed edges have probability p = 0).
    omega : numpy.ndarray
        The rate with which the observed edges are switched on 
        :math:`\omega = \left(\frac{1}{\tau^+} + \frac{1}{\tau^{-}}\right)^{-1}`
        (the remaining un-observed edges have rate :math:`\omega = 0`).
    """

    if type(temporal_network) in [ec, el, el_h, ec_h]:
        traj = tc.get_edge_trajectories(temporal_network)
        tmax = temporal_network.tmax
        if type(temporal_network) in [ec, ec_h]:
            t0 = temporal_network.t0
        else:
            t0 = temporal_network.t[0]
    elif type(temporal_network) == edge_trajectories:
        traj = temporal_network.trajectories
        tmax = temporal_network.tmax
        t0 = temporal_network.t0
    else:
        raise ValueError("Unknown type for temporal network:",
                         type(temporal_network))

    T = tmax - t0

    connection_probability = np.empty(len(traj))
    activity_rate = np.empty(len(traj))

    life_times = []

    for iedge, entry in enumerate(traj):

        for pair in entry.time_pairs:
            if pair[0] != t0 and pair[0] != tmax:
                life_times.append(pair[1] - pair[0])

    return np.array(life_times)
Example #3
0
def contact_coverage(temporal_network):
    """Get the total number of discovered unique edges C(t), i.e. the contact coverage.
    
    Parameters
    ==========
    temporal_network : :class:`_tacoma.edge_trajectories`, :class:`_tacoma.edge_lists`, :class:`_tacoma.edge_changes` or :obj:`list` of :class:`_tacoma.edge_trajectory_entry`

    Returns
    =======
    t : numpy.ndarray
        Time points at which new edges have been discovered
    C : numpy.ndarray
        total number of edges discovered up to time t.
    """

    if type(temporal_network) in [ec, el, el_h, ec_h]:
        traj = tc.get_edge_trajectories(temporal_network)
    elif type(temporal_network) == list and type(
            temporal_network[0]) == tc.edge_trajectory_entry:
        traj = temporal_network
    elif type(temporal_network) == edge_trajectories:
        traj = temporal_network.trajectories
    else:
        raise ValueError("Unknown type for temporal network:",
                         type(temporal_network))

    t = []
    count = []
    for iedge, entry in enumerate(traj):
        t0 = entry.time_pairs[0][0]
        if len(t) > 0:
            if t[-1] == t0:
                count[-1] = iedge + 1
            else:
                count.append(iedge + 1)
                t.append(t0)
        else:
            count.append(iedge + 1)
            t.append(t0)

    return np.array(t), np.array(count, dtype=float)
Example #4
0
def write_edge_trajectory_coordinates(temporal_network,
                                      filename,
                                      filter_for_duration=0.0):
    """Write the coordinates of the edge activation periods to a json-file
    such that each entry corresponds to a line to be drawn.

    Parameters
    ----------
    temporal_network : :mod:`edge_changes`, :mod:`edge_lists`, :mod:`edge_changes_with_histograms`, or :mod:`edge_lists_with_histograms`
        An instance of a temporal network.
    filename : :obj:`str`
        Write to this file.
    """

    traj = tc.get_edge_trajectories(temporal_network)

    try:
        t0 = temporal_network.t[0]
    except:
        t0 = temporal_network.t0
    tmax = temporal_network.tmax

    coords = []
    for i_edge, entry in enumerate(traj):
        for time_pair in entry.time_pairs:
            t_i = time_pair[0]
            t_f = time_pair[1]
            if t_f - t_i > filter_for_duration:
                coords.append((i_edge, t_i, t_f))

    data = {
        'xlim': (t0, tmax),
        'ylim': (0, len(traj)),
        'data': coords,
    }

    filename = os.path.abspath(os.path.expanduser(filename))
    with open(filename, 'w') as f:
        json.dump(data, f)
Example #5
0
import matplotlib.pyplot as pl

import tacoma as tc
from tacoma.drawing import draw_edges
from tacoma.drawing import get_edge_order

import numpy as np

#tn = tc.load_sociopatterns_hypertext_2009()
tn = tc.load_json_taco('~/.tacoma/dtu_1_weeks.taco')
tn = tc.convert(tn)

edge_traj = tc.get_edge_trajectories(tn, return_edge_similarities=True)

print(edge_traj.edge_similarities[:10])

edge_order = get_edge_order(edge_traj, threshold=3600.)

print(edge_order)
print(np.all(edge_order == np.sort(edge_order)))

draw_edges(edge_traj.trajectories, edge_order=edge_order)
draw_edges(edge_traj.trajectories)

pl.show()
Example #6
0
import matplotlib.pyplot as pl

from tacoma.model_conversions import estimate_ZSBB_args
from tacoma.model_conversions import estimate_flockwork_P_args
from tacoma.model_conversions import estimate_dynamic_RGG_args

# ======== get original network =============
socio = tc.load_sociopatterns_hypertext_2009()
socio_binned = tc.bin(socio, dt=20.)

# ========= plot properties ==============
socio_result = tc.measure_group_sizes_and_durations(socio)
fig, ax, data = temporal_network_group_analysis(socio_result,
                                                time_unit=socio.time_unit)
fig.tight_layout()
traj = tc.get_edge_trajectories(socio)
draw_edges(traj.trajectories, ax=ax[3])

# ========== generate surrogate from ZSBB model ======
ZSBB_params = estimate_ZSBB_args(socio, group_sizes_and_durations=socio_result)
ZSBB_params['b0'] = 0.51
ZSBB_params['b1'] = 1.0
ZSBB_params['lambda'] = 0.9

zsbb = tc.ZSBB_model(**ZSBB_params)
this_t0 = zsbb.t0
zsbb.t0 = 0.
zsbb.tmax -= this_t0
zsbb.t = [(t - this_t0) / zsbb.tmax * (socio.tmax - socio.t[0])
          for t in zsbb.t]
zsbb.tmax = socio.tmax - socio.t[0]
Example #7
0
def edge_activity_plot(
    temporal_network,
    time_normalization_factor=1.,
    time_unit=None,
    ax=None,
    fit=False,
    edge_order=None,
    color=None,
    alpha=0.5,
    linewidth=1,
    intervals_to_discard_for_fit=[],
    fit_color=None,
    return_fit_params=False,
):
    """
    Draw an edge activity plot for the given temporal network.
    This is a wrapper for :func:`tacoma.drawing.draw_edges`.

    Parameters
    ----------
    temporal_network : :class:`_tacoma.edge_lists` or :class:`_tacoma.edge_changes`.
        A temporal network.
    time_normalization_factor, float, default : 1.0
        Rescale time by this factor.
    time_unit : str, default : None
        Unit of time to put on the axis.
    ax : matplotlib.Axes, default : None
        Axis to draw an, will create new one if none provided.
    fit : bool, default : False
        Fit a curve to the number of uniquely observed edges.
    edge_order : list of int, default : None
        Reorder the edges according to this list before drawing.
    color : a matplotlib color, default : None
        Color in which to draw the edges in
    alpha : float, default : 0.5
        Line opacity of edges
    linewidth : float, default : 1.0
        Line width of edges
    intervals_to_discard_for_fit : list of tuple of float
        a list of time intervals which have to be discarded for the fit
    fit_color : a matplotlib color, default : 'k'
        color in which to draw the fit in
    return_fit_params : bool, default : False
        Switch this on if you want to obtain the fit parameters.

    Returns
    -------
    fig : matplotlib.Figure
        If an axes was provided, this is `None`.
    ax : matplotlib.Axes
        The axes the plot was drawn on.
    popt : tuple of float
        Fit parameters, will only be returned if `return_fit_params` is `True`.
    """

    traj = tc.get_edge_trajectories(temporal_network)
    return draw_edges(
        traj,
        time_normalization_factor=time_normalization_factor,
        time_unit=time_unit,
        ax=ax,
        fit=fit,
        edge_order=edge_order,
        color=color,
        alpha=alpha,
        linewidth=linewidth,
        intervals_to_discard_for_fit=intervals_to_discard_for_fit,
        fit_color=fit_color,
        return_fit_params=return_fit_params,
    )
Example #8
0
    L.t = [0.0, 1.0, 2.0]
    L.tmax = 3.0
    L.edges = [
        [(0, 1)],
        [(1, 2), (0, 2)],
        [(0, 1)],
    ]

    L = _tacoma.dynamic_RGG(100, 100, mean_link_duration=10)
    #F = tc.flockwork_P_varying_rates([],100,[0.5],100,[(0.0,1.0)],tmax=100)
    F = L
    FBIN = tc.bin(F, dt=1)
    # draw_rows(FBIN)

    start = time.time()
    traj, similarities = tc.get_edge_trajectories(
        FBIN, return_edge_similarities=True)
    end = time.time()
    print(similarities)

    print("needed ", end - start, "seconds")
    draw_edges(traj, fit=True)

    start = time.time()
    result = tc.get_edge_trajectories(F)
    end = time.time()
    print("needed ", end - start, "seconds")
    draw_edges(traj)

    # draw_edge_lists(L)

    pl.show()