tc.gillespie_node_based_SIS(fwP_el, SIS) end = time.time() print("node-based simulation on edge_lists took", end - start, "seconds") pl.plot(SIS.time, SIS.I) start = time.time() SIS = tc.SIS(N, t_run_total * 2, infection_rate, recovery_rate, N // 2, seed=seed, verbose=True) tc.gillespie_SIS(fwP_ec, SIS, verbose=True) end = time.time() print("edge-based simulation on edge_changes took", end - start, "seconds") pl.plot(SIS.time, SIS.I) start = time.time() SIS = tc.SIS(N, t_run_total * 2, infection_rate, recovery_rate, N // 2, seed=seed) tc.gillespie_SIS(fwP_el, SIS) end = time.time()
print(mean_k) eta = R0 * rho / mean_k i_sample = np.zeros_like(t_sample) successful = 0 for meas in range(N_meas): sis = tc.SIS(N, t_simulation, eta, rho, number_of_initially_infected=10) tc.gillespie_SIS(tn, sis) t = np.array(sis.time) i = np.array(sis.I, dtype=float) / N this_sample = tc.sample_a_function(t, i, t_sample) if this_sample[-1] > 0.0: successful += 1 i_sample += this_sample ax[2].plot(t_sample, this_sample, c=line.get_color(), alpha=0.1) ax[1].plot(t_sample, i_sample / successful) pl.show()
tmax = 10.0 seed = 7925 R0 = 1.2 recovery_rate = 1.0 infection_rate = R0 / (N - 1) * recovery_rate complete_graph = tc.complete_graph(N) start = time.time() SIS = tc.SIS(N, t_run_total * 2, infection_rate, recovery_rate, N // 2, seed=seed) tc.gillespie_SIS(complete_graph, SIS) end = time.time() print("simulation on edge_lists took", end - start, "seconds") pl.plot(SIS.time, SIS.I) mv_SIS = tc.MARKOV_SIS(N, t_run_total * 2, infection_rate, recovery_rate, 0.01, N // 2, seed=seed) start = time.time()
P = [ 0.5 ] rewiring_rate = [ (0.0,1.0) ] t_run_total = 500.0 tmax = 1000.0 seed = 7925 infection_rate = 1.0 recovery_rate = 0.1 E = flockwork_P_equilibrium_configuration(N,P[0]) fwP_ec = tc.flockwork_P_varying_rates(E,N,P,t_run_total,rewiring_rate,tmax,seed=seed) fwP_el = tc.convert(fwP_ec) start = time.time() SIS = tc.SIS(N,t_run_total*2,infection_rate,recovery_rate,N//2,seed = seed) tc.gillespie_SIS(fwP_ec,SIS) end = time.time() print("simulation on edge_changes took", end-start,"seconds") pl.plot(SIS.time, SIS.I) start = time.time() SIS = tc.SIS(N,t_run_total*2,infection_rate,recovery_rate,N//2,seed = seed) tc.gillespie_SIS(fwP_el,SIS) end = time.time() print("simulation on edge_lists took", end-start,"seconds") pl.plot(SIS.time, SIS.I)
t = np.array(SIS.time) I = np.array(SIS.I) this_pl, = pl.plot(t, I, 's', ms=2, alpha=0.5, mfc='None') mean_I_1 = tc.time_average(t, I, tmax=t_run_total) SIS = _tc.SIS(N, t_run_total, infection_rate, recovery_rate, number_of_initially_infected=N, sampling_dt=1) tn = _tc.activity_model(N, k / (N - 1.), omega, t_run_total) tc.gillespie_SIS(tn, SIS) t = np.array(SIS.time) I = np.array(SIS.I) mean_I_2 = tc.time_average(t, I, tmax=t_run_total) curve_1.append(mean_I_1) curve_2.append(mean_I_2) this_pl, = pl.plot(t, I, '-', lw=1, alpha=0.5, c=this_pl.get_color())