Example #1
0
def evaluate_df(df, tags_dict, artifacts):
    # Retrieve artifacts
    params = artifacts["params"]

    # Prepare
    df, tags_above_freq, tags_below_freq = data.prepare(
        df=df,
        include=list(tags_dict.keys()),
        exclude=config.EXCLUDED_TAGS,
        min_tag_freq=int(params.min_tag_freq),
    )

    # Preprocess
    df.text = df.text.apply(
        data.preprocess,
        lower=bool(strtobool(str(params.lower))),
        stem=bool(strtobool(str(params.stem))),
    )

    # Evaluate
    y_true, y_pred, performance = eval.evaluate(df=df, artifacts=artifacts)
    sorted_tags = list(
        OrderedDict(
            sorted(performance["class"].items(), key=lambda tag: tag[1]["f1"], reverse=True)
        ).keys()
    )

    return y_true, y_pred, performance, sorted_tags, df
Example #2
0
def test_iterative_train_test_split(tags, df):
    # Process
    df, tags_above_freq, tags_below_freq = data.prepare(df=df,
                                                        include=tags,
                                                        min_tag_freq=1)
    df.text = df.text.apply(data.preprocess)

    # Encode labels
    labels = df.tags
    label_encoder = data.MultiLabelLabelEncoder()
    label_encoder.fit(labels)
    y = label_encoder.encode(labels)

    # Split data
    X = df.text.to_numpy()
    X_train, X_, y_train, y_ = data.iterative_train_test_split(X=X,
                                                               y=y,
                                                               train_size=0.7)
    X_val, X_test, y_val, y_test = data.iterative_train_test_split(
        X=X_, y=y_, train_size=0.5)

    assert len(X_train) == len(y_train)
    assert len(X_val) == len(y_val)
    assert len(X_test) == len(y_test)
    assert len(X_train) / float(len(X)) == pytest.approx(
        0.7, abs=0.05)  # 0.7 ± 0.05
    assert len(X_val) / float(len(X)) == pytest.approx(0.15,
                                                       abs=0.05)  # 0.15 ± 0.05
    assert len(X_test) / float(len(X)) == pytest.approx(
        0.15, abs=0.05)  # 0.15 ± 0.05
Example #3
0
def test_clean(tags, df):
    min_tag_freq = 30
    df, tags_above_freq, tags_below_freq = data.prepare(
        df=df,
        include=tags,
        exclude=config.EXCLUDED_TAGS,
        min_tag_freq=min_tag_freq,
    )
    all_tags = list(itertools.chain.from_iterable(df.tags))
    assert Counter(all_tags).most_common()[-1][1] >= min_tag_freq
Example #4
0
    # Dataframe
    df = pd.DataFrame(projects)
    st.text(f"Projects (count: {len(df)}):")
    st.write(df)

    # Filter tags
    st.write("---")
    st.subheader("Annotation")
    st.write(
        "We want to determine what the minimum tag frequency is so that we have enough samples per tag for training."
    )
    min_tag_freq = st.slider("min_tag_freq", min_value=1, value=30, step=1)
    df, tags_above_freq, tags_below_freq = data.prepare(
        df=df,
        include=list(tags_dict.keys()),
        exclude=config.EXCLUDED_TAGS,
        min_tag_freq=min_tag_freq,
    )
    col1, col2, col3 = st.beta_columns(3)
    with col1:
        st.write("**Most common tags**:")
        for item in tags_above_freq.most_common(5):
            st.write(item)
    with col2:
        st.write("**Tags that just made the cut**:")
        for item in tags_above_freq.most_common()[-5:]:
            st.write(item)
    with col3:
        st.write("**Tags that just missed the cut**:")
        for item in tags_below_freq.most_common(5):
            st.write(item)
Example #5
0
def run(params: Namespace, trial: optuna.trial._trial.Trial = None) -> Dict:
    """Operations for training.

    Args:
        params (Namespace): Input parameters for operations.
        trial (optuna.trial._trial.Trail, optional): Optuna optimization trial. Defaults to None.

    Returns:
        Artifacts to save and load for later.
    """
    # 1. Set seed
    utils.set_seed(seed=params.seed)

    # 2. Set device
    device = utils.set_device(cuda=params.cuda)

    # 3. Load data
    projects_fp = Path(config.DATA_DIR, "projects.json")
    tags_fp = Path(config.DATA_DIR, "tags.json")
    projects = utils.load_dict(filepath=projects_fp)
    tags_dict = utils.list_to_dict(utils.load_dict(filepath=tags_fp),
                                   key="tag")
    df = pd.DataFrame(projects)
    if params.shuffle:
        df = df.sample(frac=1).reset_index(drop=True)
    df = df[:params.subset]  # None = all samples

    # 4. Prepare data (feature engineering, filter, clean)
    df, tags_above_freq, tags_below_freq = data.prepare(
        df=df,
        include=list(tags_dict.keys()),
        exclude=config.EXCLUDED_TAGS,
        min_tag_freq=params.min_tag_freq,
    )
    params.num_samples = len(df)

    # 5. Preprocess data
    df.text = df.text.apply(data.preprocess,
                            lower=params.lower,
                            stem=params.stem)

    # 6. Encode labels
    labels = df.tags
    label_encoder = data.MultiLabelLabelEncoder()
    label_encoder.fit(labels)
    y = label_encoder.encode(labels)

    # Class weights
    all_tags = list(itertools.chain.from_iterable(labels.values))
    counts = np.bincount(
        [label_encoder.class_to_index[class_] for class_ in all_tags])
    class_weights = {i: 1.0 / count for i, count in enumerate(counts)}

    # 7. Split data
    utils.set_seed(seed=params.seed)  # needed for skmultilearn
    X = df.text.to_numpy()
    X_train, X_, y_train, y_ = data.iterative_train_test_split(
        X=X, y=y, train_size=params.train_size)
    X_val, X_test, y_val, y_test = data.iterative_train_test_split(
        X=X_, y=y_, train_size=0.5)
    test_df = pd.DataFrame({
        "text": X_test,
        "tags": label_encoder.decode(y_test)
    })

    # 8. Tokenize inputs
    tokenizer = data.Tokenizer(char_level=params.char_level)
    tokenizer.fit_on_texts(texts=X_train)
    X_train = np.array(tokenizer.texts_to_sequences(X_train), dtype=object)
    X_val = np.array(tokenizer.texts_to_sequences(X_val), dtype=object)
    X_test = np.array(tokenizer.texts_to_sequences(X_test), dtype=object)

    # 9. Create dataloaders
    train_dataset = data.CNNTextDataset(X=X_train,
                                        y=y_train,
                                        max_filter_size=params.max_filter_size)
    val_dataset = data.CNNTextDataset(X=X_val,
                                      y=y_val,
                                      max_filter_size=params.max_filter_size)
    train_dataloader = train_dataset.create_dataloader(
        batch_size=params.batch_size)
    val_dataloader = val_dataset.create_dataloader(
        batch_size=params.batch_size)

    # 10. Initialize model
    model = models.initialize_model(
        params=params,
        vocab_size=len(tokenizer),
        num_classes=len(label_encoder),
        device=device,
    )

    # 11. Train model
    logger.info(
        f"Parameters: {json.dumps(params.__dict__, indent=2, cls=NumpyEncoder)}"
    )
    params, model, loss = train.train(
        params=params,
        train_dataloader=train_dataloader,
        val_dataloader=val_dataloader,
        model=model,
        device=device,
        class_weights=class_weights,
        trial=trial,
    )

    # 12. Evaluate model
    artifacts = {
        "params": params,
        "label_encoder": label_encoder,
        "tokenizer": tokenizer,
        "model": model,
        "loss": loss,
    }
    device = torch.device("cpu")
    y_true, y_pred, performance = eval.evaluate(df=test_df,
                                                artifacts=artifacts)
    artifacts["performance"] = performance

    return artifacts
Example #6
0
def train(params: Namespace, trial: optuna.trial._trial.Trial = None) -> Dict:
    """Operations for training.

    Args:
        params (Namespace): Input parameters for operations.
        trial (optuna.trial._trial.Trail, optional): Optuna optimization trial. Defaults to None.

    Returns:
        Artifacts to save and load for later.
    """
    # Set up
    utils.set_seed(seed=params.seed)
    device = utils.set_device(cuda=params.cuda)

    # Load features
    features_fp = Path(config.DATA_DIR, "features.json")
    tags_fp = Path(config.DATA_DIR, "tags.json")
    features = utils.load_dict(filepath=features_fp)
    tags_dict = utils.list_to_dict(utils.load_dict(filepath=tags_fp),
                                   key="tag")
    df = pd.DataFrame(features)
    if params.shuffle:
        df = df.sample(frac=1).reset_index(drop=True)
    df = df[:params.subset]  # None = all samples

    # Prepare data (filter, clean, etc.)
    df, tags_above_freq, tags_below_freq = data.prepare(
        df=df,
        include=list(tags_dict.keys()),
        exclude=config.EXCLUDED_TAGS,
        min_tag_freq=params.min_tag_freq,
    )
    params.num_samples = len(df)

    # Preprocess data
    df.text = df.text.apply(data.preprocess,
                            lower=params.lower,
                            stem=params.stem)

    # Encode labels
    labels = df.tags
    label_encoder = data.MultiLabelLabelEncoder()
    label_encoder.fit(labels)
    y = label_encoder.encode(labels)

    # Class weights
    all_tags = list(itertools.chain.from_iterable(labels.values))
    counts = np.bincount(
        [label_encoder.class_to_index[class_] for class_ in all_tags])
    class_weights = {i: 1.0 / count for i, count in enumerate(counts)}

    # Split data
    utils.set_seed(seed=params.seed)  # needed for skmultilearn
    X = df.text.to_numpy()
    X_train, X_, y_train, y_ = data.iterative_train_test_split(
        X=X, y=y, train_size=params.train_size)
    X_val, X_test, y_val, y_test = data.iterative_train_test_split(
        X=X_, y=y_, train_size=0.5)
    test_df = pd.DataFrame({
        "text": X_test,
        "tags": label_encoder.decode(y_test)
    })

    # Tokenize inputs
    tokenizer = data.Tokenizer(char_level=params.char_level)
    tokenizer.fit_on_texts(texts=X_train)
    X_train = np.array(tokenizer.texts_to_sequences(X_train), dtype=object)
    X_val = np.array(tokenizer.texts_to_sequences(X_val), dtype=object)
    X_test = np.array(tokenizer.texts_to_sequences(X_test), dtype=object)

    # Create dataloaders
    train_dataset = data.CNNTextDataset(X=X_train,
                                        y=y_train,
                                        max_filter_size=params.max_filter_size)
    val_dataset = data.CNNTextDataset(X=X_val,
                                      y=y_val,
                                      max_filter_size=params.max_filter_size)
    train_dataloader = train_dataset.create_dataloader(
        batch_size=params.batch_size)
    val_dataloader = val_dataset.create_dataloader(
        batch_size=params.batch_size)

    # Initialize model
    model = models.initialize_model(
        params=params,
        vocab_size=len(tokenizer),
        num_classes=len(label_encoder),
        device=device,
    )

    # Train model
    logger.info(
        f"Parameters: {json.dumps(params.__dict__, indent=2, cls=NumpyEncoder)}"
    )
    class_weights_tensor = torch.Tensor(np.array(list(class_weights.values())))
    loss_fn = nn.BCEWithLogitsLoss(weight=class_weights_tensor)
    optimizer = torch.optim.Adam(model.parameters(), lr=params.lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode="min",
                                                           factor=0.05,
                                                           patience=5)

    # Trainer module
    trainer = Trainer(
        model=model,
        device=device,
        loss_fn=loss_fn,
        optimizer=optimizer,
        scheduler=scheduler,
        trial=trial,
    )

    # Train
    best_val_loss, best_model = trainer.train(params.num_epochs,
                                              params.patience,
                                              train_dataloader, val_dataloader)

    # Find best threshold
    _, y_true, y_prob = trainer.eval_step(dataloader=train_dataloader)
    params.threshold = find_best_threshold(y_true=y_true, y_prob=y_prob)

    # Evaluate model
    artifacts = {
        "params": params,
        "label_encoder": label_encoder,
        "tokenizer": tokenizer,
        "model": best_model,
        "loss": best_val_loss,
    }
    device = torch.device("cpu")
    y_true, y_pred, performance = eval.evaluate(df=test_df,
                                                artifacts=artifacts)
    artifacts["performance"] = performance

    return artifacts