Example #1
0
def compare_tags(texts: str, tags: List, artifacts: Dict,
                 test_type: str) -> List:
    """Compare ground truth with predicted tags.

    Args:
        texts (List): List of input texts to predict on.
        tags (Dict): List of ground truth tags for each input.
        artifacts (Dict): Artifacts needed for inference.
        test_type (str): Type of test (INV, DIR, MFT, etc.)

    Returns:
        List: Results with inputs, predictions and success status.
    """
    # Predict
    predictions = predict.predict(texts=texts, artifacts=artifacts)

    # Evaluate
    results = {"passed": [], "failed": []}
    for i, prediction in enumerate(predictions):
        result = {
            "input": {
                "text": texts[i],
                "tags": tags[i]
            },
            "prediction": predictions[i],
            "type": test_type,
        }
        if all(tag in prediction["predicted_tags"] for tag in tags[i]):
            results["passed"].append(result)
        else:
            results["failed"].append(result)
    return results
Example #2
0
def predict_tags(
    text: Optional[
        str] = "Transfer learning with BERT for self-supervised learning",
    model_dir: Path = config.MODEL_DIR,
) -> Dict:
    """Predict tags for a give input text using a trained model.

    Warning:
        Make sure that you have a trained model first!

    Args:
        text (str, optional): Input text to predict tags for.
                              Defaults to "Transfer learning with BERT for self-supervised learning".
        model_dir (Path): location of model artifacts. Defaults to config.MODEL_DIR.

    Raises:
        ValueError: Run id doesn't exist in experiment.

    Returns:
        Predicted tags for input text.
    """
    # Predict
    artifacts = main.load_artifacts(model_dir=model_dir)
    prediction = predict.predict(texts=[text], artifacts=artifacts)
    logger.info(json.dumps(prediction, indent=2))

    return prediction
Example #3
0
def predict_tags(
    text: str = "Transfer learning with BERT for self-supervised learning",
    run_id: str = "",
) -> Dict:
    """Predict tags for a give input text using a trained model.

    Warning:
        Make sure that you have a trained model first!

    Args:
        text (str, optional): Input text to predict tags for.
                              Defaults to "Transfer learning with BERT for self-supervised learning".
        run_id (str, optional): ID of the run to load model artifacts from.
                                Defaults to model with lowest `best_val_loss` from the `best` experiment.

    Returns:
        Predicted tags for input text.
    """
    # Get best run
    if not run_id:
        experiment_id = mlflow.get_experiment_by_name("best").experiment_id
        all_runs = mlflow.search_runs(
            experiment_ids=experiment_id,
            order_by=["metrics.best_val_loss ASC"],
        )
        run_id = all_runs.iloc[0].run_id

    # Predict
    prediction = predict.predict(texts=[text], run_id=run_id)
    logger.info(json.dumps(prediction, indent=2))

    return prediction
Example #4
0
def predict_tags(
        text: Optional[
            str] = "Transfer learning with BERT for self-supervised learning",
        run_id: str = open(Path(config.MODEL_DIR, "run_id.txt")).read(),
) -> Dict:
    """Predict tags for a give input text using a trained model.

    Warning:
        Make sure that you have a trained model first!

    Args:
        text (str, optional): Input text to predict tags for.
                              Defaults to "Transfer learning with BERT for self-supervised learning".
        run_id (str): ID of the model run to load artifacts. Defaults to run ID in config.MODEL_DIR.

    Raises:
        ValueError: Run id doesn't exist in experiment.

    Returns:
        Predicted tags for input text.
    """
    # Predict
    artifacts = main.load_artifacts(run_id=run_id)
    prediction = predict.predict(texts=[text], artifacts=artifacts)
    logger.info(json.dumps(prediction, indent=2))

    return prediction
Example #5
0
def _predict(request: Request, payload: PredictPayload) -> Dict:
    """Predict tags for a list of texts using the best run."""
    # Predict
    texts = [item.text for item in payload.texts]
    predictions = predict.predict(texts=texts, artifacts=artifacts)
    response = {
        "message": HTTPStatus.OK.phrase,
        "status-code": HTTPStatus.OK,
        "data": {
            "predictions": predictions
        },
    }
    return response
Example #6
0
def _predict(request: Request, run_id: str, payload: PredictPayload) -> Dict:
    """Predict tags for a list of texts using artifacts from run `run_id`."""
    artifacts = main.load_artifacts(run_id=run_id)
    texts = [item.text for item in payload.texts]
    predictions = predict.predict(texts=texts, artifacts=artifacts)
    response = {
        "message": HTTPStatus.OK.phrase,
        "status-code": HTTPStatus.OK,
        "data": {
            "run_id": run_id,
            "predictions": predictions
        },
    }
    return response
Example #7
0
def predict_tags(
    text: Optional[
        str] = "Transfer learning with BERT for self-supervised learning",
    experiment_name: Optional[str] = "best",
    run_id: Optional[str] = "",
) -> Dict:
    """Predict tags for a give input text using a trained model.

    Warning:
        Make sure that you have a trained model first!

    Args:
        text (str, optional): Input text to predict tags for.
                              Defaults to "Transfer learning with BERT for self-supervised learning".
        experiment_name (str, optional): Name of the experiment to fetch run from.
        run_id (str, optional): ID of the run to load model artifacts from.
                                Defaults to run with highest F1 score.

    Raises:
        ValueError: Run id doesn't exist in experiment.

    Returns:
        Predicted tags for input text.
    """
    # Get sorted runs
    runs = utils.get_sorted_runs(
        experiment_name=experiment_name,
        order_by=["metrics.f1 DESC"],
    )
    run_ids = [run["run_id"] for run in runs]

    # Get best run
    if not run_id:
        run_id = run_ids[0]

    # Validate run id
    if run_id not in run_ids:  # pragma: no cover, simple value check
        raise ValueError(
            f"Run_id {run_id} does not exist in experiment {experiment_name}")

    # Predict
    artifacts = main.load_artifacts(run_id=run_id)
    prediction = predict.predict(texts=[text], artifacts=artifacts)
    logger.info(json.dumps(prediction, indent=2))

    return prediction
Example #8
0
def predict_tags(text: str, run_id: str) -> Dict:
    """Predict tags for a give input text using a trained model.

    Warning:
        Make sure that you have a trained model first!

    Args:
        text (str): Input text to predict tags for.
        run_id (str): ID of the model run to load artifacts.

    Raises:
        ValueError: Run id doesn't exist in experiment.

    Returns:
        Predicted tags for input text.
    """
    # Predict
    artifacts = load_artifacts(run_id=run_id)
    prediction = predict.predict(texts=[text], artifacts=artifacts)
    logger.info(json.dumps(prediction, indent=2))

    return prediction