Example #1
0
def main():
    args = parser.parse_args()
    #model_md5 = file_md5(args.model)
    model = load_model(args.model)
    print("Previous alphabet",model.sublayers[-1].output_alphabet)

    for attr in ["mod_bases","mod_labels","mod_name_conv","ordered_mod_long_names"]:
        if "mod" in attr:
            print(attr,getattr(model.sublayers[-1],attr))
    #print("Previous alphabet",dir(model.sublayers[-1]))#).mod_long_names)

    model.sublayers[-1].output_alphabet = args.alphabet
    save_model(model,args.output)
Example #2
0
def main():
    args = parser.parse_args()

    np.random.seed(args.seed)

    device = torch.device(args.device)
    if device.type == 'cuda':
        try:
            torch.cuda.set_device(device)
        except AttributeError:
            sys.stderr.write('ERROR: Torch not compiled with CUDA enabled ' +
                             'and GPU device set.')
            sys.exit(1)

    if not os.path.exists(args.output):
        os.mkdir(args.output)
    elif not args.overwrite:
        sys.stderr.write('Error: Output directory {} exists but --overwrite ' +
                         'is false\n'.format(args.output))
        exit(1)
    if not os.path.isdir(args.output):
        sys.stderr.write('Error: Output location {} is not directory\n'.format(
            args.output))
        exit(1)

    copyfile(args.model, os.path.join(args.output, 'model.py'))

    # Create a logging file to save details of chunks.
    # If args.chunk_logging_threshold is set to 0 then we log all chunks
    # including those rejected.
    chunk_log = chunk_selection.ChunkLog(args.output)

    log = helpers.Logger(os.path.join(args.output, 'model.log'), args.quiet)
    log.write('* Taiyaki version {}\n'.format(__version__))
    log.write('* Command line\n')
    log.write(' '.join(sys.argv) + '\n')
    log.write('* Loading data from {}\n'.format(args.input))
    log.write('* Per read file MD5 {}\n'.format(helpers.file_md5(args.input)))

    if args.input_strand_list is not None:
        read_ids = list(set(helpers.get_read_ids(args.input_strand_list)))
        log.write(('* Will train from a subset of {} strands, determined ' +
                   'by read_ids in input strand list\n').format(len(read_ids)))
    else:
        log.write('* Reads not filtered by id\n')
        read_ids = 'all'

    if args.limit is not None:
        log.write('* Limiting number of strands to {}\n'.format(args.limit))

    with mapped_signal_files.HDF5Reader(args.input) as per_read_file:
        alphabet, _, _ = per_read_file.get_alphabet_information()
        read_data = per_read_file.get_multiple_reads(read_ids,
                                                     max_reads=args.limit)
        # read_data now contains a list of reads
        # (each an instance of the Read class defined in
        # mapped_signal_files.py, based on dict)

    if len(read_data) == 0:
        log.write('* No reads remaining for training, exiting.\n')
        exit(1)
    log.write('* Loaded {} reads.\n'.format(len(read_data)))

    # Get parameters for filtering by sampling a subset of the reads
    # Result is a tuple median mean_dwell, mad mean_dwell
    # Choose a chunk length in the middle of the range for this
    sampling_chunk_len = (args.chunk_len_min + args.chunk_len_max) // 2
    filter_parameters = chunk_selection.sample_filter_parameters(
        read_data,
        args.sample_nreads_before_filtering,
        sampling_chunk_len,
        args,
        log,
        chunk_log=chunk_log)

    medmd, madmd = filter_parameters

    log.write(
        "* Sampled {} chunks: median(mean_dwell)={:.2f}, mad(mean_dwell)={:.2f}\n"
        .format(args.sample_nreads_before_filtering, medmd, madmd))
    log.write('* Reading network from {}\n'.format(args.model))
    nbase = len(alphabet)
    model_kwargs = {
        'stride': args.stride,
        'winlen': args.winlen,
        # Number of input features to model e.g. was >1 for event-based
        # models (level, std, dwell)
        'insize': 1,
        'size': args.size,
        'outsize': flipflopfings.nstate_flipflop(nbase)
    }
    network = helpers.load_model(args.model, **model_kwargs).to(device)
    log.write('* Network has {} parameters.\n'.format(
        sum([p.nelement() for p in network.parameters()])))

    optimizer = torch.optim.Adam(network.parameters(),
                                 lr=args.lr_max,
                                 betas=args.adam,
                                 weight_decay=args.weight_decay)

    lr_scheduler = optim.CosineFollowedByFlatLR(optimizer, args.lr_min,
                                                args.lr_cosine_iters)

    score_smoothed = helpers.WindowedExpSmoother()

    log.write('* Dumping initial model\n')
    helpers.save_model(network, args.output, 0)

    total_bases = 0
    total_samples = 0
    total_chunks = 0
    # To count the numbers of different sorts of chunk rejection
    rejection_dict = defaultdict(int)

    t0 = time.time()
    log.write('* Training\n')

    for i in range(args.niteration):
        lr_scheduler.step()
        # Chunk length is chosen randomly in the range given but forced to
        # be a multiple of the stride
        batch_chunk_len = (
            np.random.randint(args.chunk_len_min, args.chunk_len_max + 1) //
            args.stride) * args.stride
        # We choose the batch size so that the size of the data in the batch
        # is about the same as args.min_batch_size chunks of length
        # args.chunk_len_max
        target_batch_size = int(args.min_batch_size * args.chunk_len_max /
                                batch_chunk_len + 0.5)
        # ...but it can't be more than the number of reads.
        batch_size = min(target_batch_size, len(read_data))

        # If the logging threshold is 0 then we log all chunks, including those
        # rejected, so pass the log
        # object into assemble_batch
        if args.chunk_logging_threshold == 0:
            log_rejected_chunks = chunk_log
        else:
            log_rejected_chunks = None
        # Chunk_batch is a list of dicts.
        chunk_batch, batch_rejections = chunk_selection.assemble_batch(
            read_data,
            batch_size,
            batch_chunk_len,
            filter_parameters,
            args,
            log,
            chunk_log=log_rejected_chunks)
        total_chunks += len(chunk_batch)

        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        # Shape of input tensor must be:
        #     (timesteps) x (batch size) x (input channels)
        # in this case:
        #     batch_chunk_len x batch_size x 1
        stacked_current = np.vstack([d['current'] for d in chunk_batch]).T
        indata = torch.tensor(stacked_current,
                              device=device,
                              dtype=torch.float32).unsqueeze(2)
        # Sequence input tensor is just a 1D vector, and so is seqlens
        seqs = torch.tensor(np.concatenate([
            flipflopfings.flipflop_code(d['sequence'], nbase)
            for d in chunk_batch
        ]),
                            device=device,
                            dtype=torch.long)
        seqlens = torch.tensor([len(d['sequence']) for d in chunk_batch],
                               dtype=torch.long,
                               device=device)

        optimizer.zero_grad()
        outputs = network(indata)
        lossvector = ctc.crf_flipflop_loss(outputs, seqs, seqlens,
                                           args.sharpen)
        loss = lossvector.sum() / (seqlens > 0.0).float().sum()
        loss.backward()
        optimizer.step()

        fval = float(loss)
        score_smoothed.update(fval)

        # Check for poison chunk and save losses and chunk locations if we're
        # poisoned If args.chunk_logging_threshold set to zero then we log
        # everything
        if fval / score_smoothed.value >= args.chunk_logging_threshold:
            chunk_log.write_batch(i, chunk_batch, lossvector)

        total_bases += int(seqlens.sum())
        total_samples += int(indata.nelement())

        # Doing this deletion leads to less CUDA memory usage.
        del indata, seqs, seqlens, outputs, loss, lossvector
        if device.type == 'cuda':
            torch.cuda.empty_cache()

        if (i + 1) % args.save_every == 0:
            helpers.save_model(network, args.output,
                               (i + 1) // args.save_every)
            log.write('C')
        else:
            log.write('.')

        if (i + 1) % DOTROWLENGTH == 0:
            # In case of super batching, additional functionality must be
            # added here
            learning_rate = lr_scheduler.get_lr()[0]
            tn = time.time()
            dt = tn - t0
            t = (
                ' {:5d} {:5.3f}  {:5.2f}s ({:.2f} ksample/s {:.2f} kbase/s) ' +
                'lr={:.2e}')
            log.write(
                t.format((i + 1) // DOTROWLENGTH, score_smoothed.value, dt,
                         total_samples / 1000.0 / dt,
                         total_bases / 1000.0 / dt, learning_rate))
            # Write summary of chunk rejection reasons
            for k, v in rejection_dict.items():
                log.write(" {}:{} ".format(k, v))
            log.write("\n")
            total_bases = 0
            total_samples = 0
            t0 = tn

    helpers.save_model(network, args.output)
Example #3
0
def main():
    args = parser.parse_args()
    np.random.seed(args.seed)

    if not os.path.exists(args.output):
        os.mkdir(args.output)
    elif not args.overwrite:
        sys.stderr.write(
            'Error: Output directory {} exists but --overwrite is false\n'.
            format(args.output))
        exit(1)
    if not os.path.isdir(args.output):
        sys.stderr.write('Error: Output location {} is not directory\n'.format(
            args.output))
        exit(1)

    log = helpers.Logger(os.path.join(args.output, 'model.log'), args.quiet)
    log.write('# Taiyaki version {}\n'.format(__version__))
    log.write('# Command line\n')
    log.write(' '.join(sys.argv) + '\n')

    if args.input_strand_list is not None:
        read_ids = list(set(helpers.get_read_ids(args.input_strand_list)))
        log.write('* Will train from a subset of {} strands\n'.format(
            len(read_ids)))
    else:
        log.write('* Reads not filtered by id\n')
        read_ids = 'all'

    if args.limit is not None:
        log.write('* Limiting number of strands to {}\n'.format(args.limit))

    with mapped_signal_files.HDF5Reader(args.input) as per_read_file:
        alphabet, _, _ = per_read_file.get_alphabet_information()
        assert len(alphabet) == 4, (
            'Squiggle prediction with modified base training data is ' +
            'not currenly supported.')
        read_data = per_read_file.get_multiple_reads(read_ids,
                                                     max_reads=args.limit)
        # read_data now contains a list of reads
        # (each an instance of the Read class defined in mapped_signal_files.py, based on dict)

    if len(read_data) == 0:
        log.write('* No reads remaining for training, exiting.\n')
        exit(1)
    log.write('* Loaded {} reads.\n'.format(len(read_data)))

    # Create a logging file to save details of chunks.
    # If args.chunk_logging_threshold is set to 0 then we log all chunks including those rejected.
    chunk_log = chunk_selection.ChunkLog(args.output)

    # Get parameters for filtering by sampling a subset of the reads
    # Result is a tuple median mean_dwell, mad mean_dwell
    filter_parameters = chunk_selection.sample_filter_parameters(
        read_data,
        args.sample_nreads_before_filtering,
        args.target_len,
        args,
        log,
        chunk_log=chunk_log)

    medmd, madmd = filter_parameters
    log.write(
        "* Sampled {} chunks: median(mean_dwell)={:.2f}, mad(mean_dwell)={:.2f}\n"
        .format(args.sample_nreads_before_filtering, medmd, madmd))

    conv_net = create_convolution(args.size, args.depth, args.winlen)
    nparam = sum([p.data.detach().numpy().size for p in conv_net.parameters()])
    log.write('# Created network.  {} parameters\n'.format(nparam))
    log.write('# Depth {} layers ({} residual layers)\n'.format(
        args.depth + 2, args.depth))
    log.write('# Window width {}\n'.format(args.winlen))
    log.write('# Context +/- {} bases\n'.format(
        (args.depth + 2) * (args.winlen // 2)))

    device = torch.device(args.device)
    conv_net = conv_net.to(device)

    optimizer = torch.optim.Adam(conv_net.parameters(),
                                 lr=args.lr_max,
                                 betas=args.adam,
                                 weight_decay=args.weight_decay)

    lr_scheduler = optim.ReciprocalLR(optimizer, args.lr_decay)

    rejection_dict = defaultdict(
        lambda: 0
    )  # To count the numbers of different sorts of chunk rejection
    t0 = time.time()
    score_smoothed = helpers.WindowedExpSmoother()
    total_chunks = 0

    for i in range(args.niteration):
        lr_scheduler.step()
        # If the logging threshold is 0 then we log all chunks, including those rejected, so pass the log
        # object into assemble_batch
        if args.chunk_logging_threshold == 0:
            log_rejected_chunks = chunk_log
        else:
            log_rejected_chunks = None
        # chunk_batch is a list of dicts.
        chunk_batch, batch_rejections = chunk_selection.assemble_batch(
            read_data,
            args.batch_size,
            args.target_len,
            filter_parameters,
            args,
            log,
            chunk_log=log_rejected_chunks,
            chunk_len_means_sequence_len=True)

        total_chunks += len(chunk_batch)
        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        # Shape of input needs to be seqlen x batchsize x embedding_dimension
        embedded_matrix = [
            embed_sequence(d['sequence'], alphabet=None) for d in chunk_batch
        ]
        seq_embed = torch.tensor(embedded_matrix).permute(1, 0, 2).to(device)
        # Shape of labels is a flat vector
        batch_signal = torch.tensor(
            np.concatenate([d['current'] for d in chunk_batch])).to(device)
        # Shape of lens is also a flat vector
        batch_siglen = torch.tensor([len(d['current'])
                                     for d in chunk_batch]).to(device)

        #print("First 10 elements of first sequence in batch",seq_embed[:10,0,:])
        #print("First 10 elements of signal batch",batch_signal[:10])
        #print("First 10 lengths",batch_siglen[:10])

        optimizer.zero_grad()

        predicted_squiggle = conv_net(seq_embed)
        batch_loss = squiggle_match_loss(predicted_squiggle, batch_signal,
                                         batch_siglen, args.back_prob)
        fval = batch_loss.sum() / float(batch_siglen.sum())

        fval.backward()
        optimizer.step()

        score_smoothed.update(float(fval))

        # Check for poison chunk and save losses and chunk locations if we're poisoned
        # If args.chunk_logging_threshold set to zero then we log everything
        if fval / score_smoothed.value >= args.chunk_logging_threshold:
            chunk_log.write_batch(i, chunk_batch, batch_loss)

        if (i + 1) % args.save_every == 0:
            helpers.save_model(conv_net, args.output,
                               (i + 1) // args.save_every)
            log.write('C')
        else:
            log.write('.')

        if (i + 1) % DOTROWLENGTH == 0:
            tn = time.time()
            dt = tn - t0
            t = ' {:5d} {:5.3f}  {:5.2f}s'
            log.write(
                t.format((i + 1) // DOTROWLENGTH, score_smoothed.value, dt))
            t0 = tn
            # Write summary of chunk rejection reasons
            for k, v in rejection_dict.items():
                log.write(" {}:{} ".format(k, v))
            log.write("\n")

    helpers.save_model(conv_net, args.output)
Example #4
0
def main():
    args = parser.parse_args()
    is_multi_gpu = (args.local_rank is not None)
    is_lead_process = (not is_multi_gpu) or args.local_rank == 0

    if is_multi_gpu:
        #Use distributed parallel processing to run one process per GPU
        try:
            torch.distributed.init_process_group(backend='nccl')
        except:
            raise Exception(
                "Unable to start multiprocessing group. " +
                "The most likely reason is that the script is running with " +
                "local_rank set but without the set-up for distributed " +
                "operation. local_rank should be used " +
                "only by torch.distributed.launch. See the README.")
        device = helpers.set_torch_device(args.local_rank)
        if args.seed is not None:
            #Make sure processes get different random picks of training data
            np.random.seed(args.seed + args.local_rank)
    else:
        device = helpers.set_torch_device(args.device)
        np.random.seed(args.seed)

    if is_lead_process:
        helpers.prepare_outdir(args.outdir, args.overwrite)
        if args.model.endswith('.py'):
            copyfile(args.model, os.path.join(args.outdir, 'model.py'))
        batchlog = helpers.BatchLog(args.outdir)
        logfile = os.path.join(args.outdir, 'model.log')
    else:
        logfile = None

    log = helpers.Logger(logfile, args.quiet)
    log.write(helpers.formatted_env_info(device))

    log.write('* Loading data from {}\n'.format(args.input))
    log.write('* Per read file MD5 {}\n'.format(helpers.file_md5(args.input)))

    if args.input_strand_list is not None:
        read_ids = list(set(helpers.get_read_ids(args.input_strand_list)))
        log.write(('* Will train from a subset of {} strands, determined ' +
                   'by read_ids in input strand list\n').format(len(read_ids)))
    else:
        log.write('* Reads not filtered by id\n')
        read_ids = 'all'

    if args.limit is not None:
        log.write('* Limiting number of strands to {}\n'.format(args.limit))

    with mapped_signal_files.HDF5Reader(args.input) as per_read_file:
        alphabet_info = per_read_file.get_alphabet_information()
        read_data = per_read_file.get_multiple_reads(read_ids,
                                                     max_reads=args.limit)
        # read_data now contains a list of reads
        # (each an instance of the Read class defined in
        # mapped_signal_files.py, based on dict)
    log.write('* Using alphabet definition: {}\n'.format(str(alphabet_info)))

    if len(read_data) == 0:
        log.write('* No reads remaining for training, exiting.\n')
        exit(1)
    log.write('* Loaded {} reads.\n'.format(len(read_data)))

    # Get parameters for filtering by sampling a subset of the reads
    # Result is a tuple median mean_dwell, mad mean_dwell
    # Choose a chunk length in the middle of the range for this
    sampling_chunk_len = (args.chunk_len_min + args.chunk_len_max) // 2
    filter_params = chunk_selection.sample_filter_parameters(
        read_data, args.sample_nreads_before_filtering, sampling_chunk_len,
        args.filter_mean_dwell, args.filter_max_dwell)

    log.write("* Sampled {} chunks".format(
        args.sample_nreads_before_filtering))
    log.write(": median(mean_dwell)={:.2f}".format(
        filter_params.median_meandwell))
    log.write(", mad(mean_dwell)={:.2f}\n".format(filter_params.mad_meandwell))
    log.write('* Reading network from {}\n'.format(args.model))
    model_kwargs = {
        'stride': args.stride,
        'winlen': args.winlen,
        # Number of input features to model e.g. was >1 for event-based
        # models (level, std, dwell)
        'insize': 1,
        'size': args.size,
        'alphabet_info': alphabet_info
    }

    if is_lead_process:
        # Under pytorch's DistributedDataParallel scheme, we
        # need a clone of the start network to use as a template for saving
        # checkpoints. Necessary because DistributedParallel makes the class
        # structure different.
        network_save_skeleton = helpers.load_model(args.model, **model_kwargs)
        log.write('* Network has {} parameters.\n'.format(
            sum([p.nelement() for p in network_save_skeleton.parameters()])))
        if not alphabet_info.is_compatible_model(network_save_skeleton):
            sys.stderr.write(
                '* ERROR: Model and mapped signal files contain incompatible '
                + 'alphabet definitions (including modified bases).')
            sys.exit(1)
        if is_cat_mod_model(network_save_skeleton):
            log.write('* Loaded categorical modified base model.\n')
            if not alphabet_info.contains_modified_bases():
                sys.stderr.write(
                    '* ERROR: Modified bases model specified, but mapped ' +
                    'signal file does not contain modified bases.')
                sys.exit(1)
        else:
            log.write('* Loaded standard (canonical bases-only) model.\n')
            if alphabet_info.contains_modified_bases():
                sys.stderr.write(
                    '* ERROR: Standard (canonical bases only) model ' +
                    'specified, but mapped signal file does contains ' +
                    'modified bases.')
                sys.exit(1)
        log.write('* Dumping initial model\n')
        helpers.save_model(network_save_skeleton, args.outdir, 0)

    if is_multi_gpu:
        #so that processes 1,2,3.. don't try to load before process 0 has saved
        torch.distributed.barrier()
        log.write('* MultiGPU process {}'.format(args.local_rank))
        log.write(': loading initial model saved by process 0\n')
        saved_startmodel_path = os.path.join(
            args.outdir, 'model_checkpoint_00000.checkpoint')
        network = helpers.load_model(saved_startmodel_path).to(device)
        # Wrap network for training in the DistributedDataParallel structure
        network = torch.nn.parallel.DistributedDataParallel(
            network,
            device_ids=[args.local_rank],
            output_device=args.local_rank)
    else:
        network = network_save_skeleton.to(device)
        network_save_skeleton = None

    optimizer = torch.optim.Adam(network.parameters(),
                                 lr=args.lr_max,
                                 betas=args.adam,
                                 weight_decay=args.weight_decay,
                                 eps=args.eps)

    if args.lr_warmup is None:
        lr_warmup = args.lr_min
    else:
        lr_warmup = args.lr_warmup

    if args.lr_frac_decay is not None:
        lr_scheduler = optim.ReciprocalLR(optimizer, args.lr_frac_decay,
                                          args.warmup_batches, lr_warmup)
        log.write('* Learning rate schedule lr_max*k/(k+t)')
        log.write(', k={}, t=iterations.\n'.format(args.lr_frac_decay))
    else:
        lr_scheduler = optim.CosineFollowedByFlatLR(optimizer, args.lr_min,
                                                    args.lr_cosine_iters,
                                                    args.warmup_batches,
                                                    lr_warmup)
        log.write('* Learning rate goes like cosine from lr_max to lr_min ')
        log.write('over {} iterations.\n'.format(args.lr_cosine_iters))
    log.write('* At start, train for {} '.format(args.warmup_batches))
    log.write('batches at warm-up learning rate {:3.2}\n'.format(lr_warmup))

    score_smoothed = helpers.WindowedExpSmoother()

    # prepare modified base paramter tensors
    network_is_catmod = is_cat_mod_model(network)
    mod_factor_t = torch.tensor(args.mod_factor,
                                dtype=torch.float32).to(device)
    can_mods_offsets = (network.sublayers[-1].can_mods_offsets
                        if network_is_catmod else None)
    # mod cat inv freq weighting is currently disabled. Compute and set this
    # value to enable mod cat weighting
    mod_cat_weights = np.ones(alphabet_info.nbase, dtype=np.float32)

    #Generating list of batches for standard loss reporting
    reporting_chunk_len = (args.chunk_len_min + args.chunk_len_max) // 2
    reporting_batch_list = list(
        prepare_random_batches(device, read_data, reporting_chunk_len,
                               args.min_sub_batch_size,
                               args.reporting_sub_batches, alphabet_info,
                               filter_params, network, network_is_catmod, log))

    log.write(
        ('* Standard loss report: chunk length = {} & sub-batch size ' +
         '= {} for {} sub-batches. \n').format(reporting_chunk_len,
                                               args.min_sub_batch_size,
                                               args.reporting_sub_batches))

    #Set cap at very large value (before we have any gradient stats).
    gradient_cap = constants.LARGE_VAL
    if args.gradient_cap_fraction is None:
        log.write('* No gradient capping\n')
    else:
        rolling_quantile = maths.RollingQuantile(args.gradient_cap_fraction)
        log.write('* Gradient L2 norm cap will be upper' +
                  ' {:3.2f} quantile of the last {} norms.\n'.format(
                      args.gradient_cap_fraction, rolling_quantile.window))

    total_bases = 0
    total_samples = 0
    total_chunks = 0
    # To count the numbers of different sorts of chunk rejection
    rejection_dict = defaultdict(int)

    t0 = time.time()
    log.write('* Training\n')

    for i in range(args.niteration):

        # Chunk length is chosen randomly in the range given but forced to
        # be a multiple of the stride
        batch_chunk_len = (
            np.random.randint(args.chunk_len_min, args.chunk_len_max + 1) //
            args.stride) * args.stride

        # We choose the size of a sub-batch so that the size of the data in
        # the sub-batch is about the same as args.min_sub_batch_size chunks of
        # length args.chunk_len_max
        sub_batch_size = int(args.min_sub_batch_size * args.chunk_len_max /
                             batch_chunk_len + 0.5)

        optimizer.zero_grad()

        main_batch_gen = prepare_random_batches(
            device, read_data, batch_chunk_len, sub_batch_size,
            args.sub_batches, alphabet_info, filter_params, network,
            network_is_catmod, log)

        chunk_count, fval, chunk_samples, chunk_bases, batch_rejections = \
                            calculate_loss( network, network_is_catmod,
                                            main_batch_gen, args.sharpen,
                                            can_mods_offsets, mod_cat_weights,
                                            mod_factor_t, calc_grads = True )

        gradnorm_uncapped = torch.nn.utils.clip_grad_norm_(
            network.parameters(), gradient_cap)
        if args.gradient_cap_fraction is not None:
            gradient_cap = rolling_quantile.update(gradnorm_uncapped)

        optimizer.step()
        if is_lead_process:
            batchlog.record(
                fval, gradnorm_uncapped,
                None if args.gradient_cap_fraction is None else gradient_cap)

        total_chunks += chunk_count
        total_samples += chunk_samples
        total_bases += chunk_bases

        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        score_smoothed.update(fval)

        if (i + 1) % args.save_every == 0 and is_lead_process:
            helpers.save_model(network, args.outdir,
                               (i + 1) // args.save_every,
                               network_save_skeleton)
            log.write('C')
        else:
            log.write('.')

        if (i + 1) % DOTROWLENGTH == 0:

            _, rloss, _, _, _ = calculate_loss(network, network_is_catmod,
                                               reporting_batch_list,
                                               args.sharpen, can_mods_offsets,
                                               mod_cat_weights, mod_factor_t)

            # In case of super batching, additional functionality must be
            # added here
            learning_rate = lr_scheduler.get_lr()[0]
            tn = time.time()
            dt = tn - t0
            t = (' {:5d} {:7.5f} {:7.5f}  {:5.2f}s ({:.2f} ksample/s {:.2f} ' +
                 'kbase/s) lr={:.2e}')
            log.write(
                t.format((i + 1) // DOTROWLENGTH, score_smoothed.value, rloss,
                         dt, total_samples / 1000.0 / dt,
                         total_bases / 1000.0 / dt, learning_rate))
            # Write summary of chunk rejection reasons
            if args.full_filter_status:
                for k, v in rejection_dict.items():
                    log.write(" {}:{} ".format(k, v))
            else:
                n_tot = n_fail = 0
                for k, v in rejection_dict.items():
                    n_tot += v
                    if k != 'pass':
                        n_fail += v
                log.write("  {:.1%} chunks filtered".format(n_fail / n_tot))
            log.write("\n")
            total_bases = 0
            total_samples = 0
            t0 = tn

            # Uncomment the lines below to check synchronisation of models
            # between processes in multi-GPU operation
            #for p in network.parameters():
            #    v = p.data.reshape(-1)[:5].to('cpu')
            #    u = p.data.reshape(-1)[-5:].to('cpu')
            #    break
            #if args.local_rank is not None:
            #    log.write("* GPU{} params:".format(args.local_rank))
            #log.write("{}...{}\n".format(v,u))

        lr_scheduler.step()

    if is_lead_process:
        helpers.save_model(network,
                           args.outdir,
                           model_skeleton=network_save_skeleton)
Example #5
0
def train_model(train_params, net_info, optim_info, res_info, read_data,
                alphabet_info, filter_params, mod_info, reporting_batch_list,
                logs):
    # Set cap at very large value (before we have any gradient stats).
    grad_max_threshs = None
    grad_max_thresh_str = 'NaN'
    score_smoothed = helpers.WindowedExpSmoother()
    total_bases = total_samples = total_chunks = 0
    # To count the numbers of different sorts of chunk rejection
    rejection_dict = defaultdict(int)
    time_last = time.time()
    logs.main.write('* Training\n')
    for curr_iter in range(train_params.niteration):
        sharpen = float(train_params.sharpen.min +
                        (train_params.sharpen.max - train_params.sharpen.min) *
                        min(1.0, curr_iter / train_params.sharpen.niter))
        mod_factor = float(
            mod_info.mod_factor.start +
            (mod_info.mod_factor.final - mod_info.mod_factor.start) *
            min(1.0, curr_iter / mod_info.mod_factor.niter))

        # Chunk length is chosen randomly in the range given but forced to
        # be a multiple of the stride
        batch_chunk_len = (np.random.randint(train_params.chunk_len_min,
                                             train_params.chunk_len_max + 1) //
                           net_info.stride) * net_info.stride
        # We choose the size of a sub-batch so that the size of the data in
        # the sub-batch is about the same as args.min_sub_batch_size chunks of
        # length args.chunk_len_max
        sub_batch_size = int(train_params.min_sub_batch_size *
                             train_params.chunk_len_max / batch_chunk_len +
                             0.5)
        main_batch_gen = prepare_random_batches(read_data, batch_chunk_len,
                                                sub_batch_size,
                                                train_params.sub_batches,
                                                alphabet_info, filter_params,
                                                net_info, logs.main)

        # take optimiser step
        optim_info.optimiser.zero_grad()
        chunk_count, fval, chunk_samples, chunk_bases, batch_rejections = \
            calculate_loss(
                net_info, main_batch_gen, sharpen, mod_info.mod_cat_weights,
                mod_factor, calc_grads=True)
        grad_maxs = apply_clipping(net_info, grad_max_threshs)
        optim_info.optimiser.step()
        if optim_info.rolling_mads is not None:
            grad_max_threshs = optim_info.rolling_mads.update(grad_maxs)
        # record step information
        if res_info.is_lead_process:
            grad_max_thresh_str = ','.join(
                ('NA' if l_gmt is None else str(float(l_gmt))
                 for l_gmt in grad_maxs))
            logs.batch.write(
                BATCH_TMPLT.format(curr_iter + 1, fval,
                                   ','.join(map(str, grad_maxs)),
                                   grad_max_thresh_str,
                                   optim_info.lr_scheduler.get_last_lr()[0],
                                   batch_chunk_len))

        total_chunks += chunk_count
        total_samples += chunk_samples
        total_bases += chunk_bases
        score_smoothed.update(fval)
        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        logs.main.write('.')

        if (curr_iter + 1) % DOTROWLENGTH == 0:
            log_polka(net_info, train_params, optim_info, time_last,
                      score_smoothed, curr_iter, total_samples, total_bases,
                      rejection_dict, res_info, logs.main)
            time_last = time.time()
            total_bases = total_samples = 0

        if (curr_iter + 1) % train_params.save_every == 0:
            #  Save model and validate
            if res_info.is_lead_process:

                saved_filename = helpers.save_model(
                    net_info.net, train_params.outdir,
                    (curr_iter + 1) // train_params.save_every,
                    net_info.net_clone)
                logs.main.write("Model saved to {}.\n".format(saved_filename))

                log_validation(net_info, reporting_batch_list, train_params,
                               mod_info, curr_iter, logs)
            time_last = time.time()

        # step learning rate scheduler
        optim_info.lr_scheduler.step()

    if res_info.is_lead_process:
        helpers.save_model(net_info.net,
                           train_params.outdir,
                           model_skeleton=net_info.net_clone)
Example #6
0
def load_network(args, alphabet_info, res_info, log):
    log.write('* Reading network from {}\n'.format(args.model))
    if res_info.is_lead_process:
        # Under pytorch's DistributedDataParallel scheme, we
        # need a clone of the start network to use as a template for saving
        # checkpoints. Necessary because DistributedParallel makes the class
        # structure different.
        model_kwargs = {
            'stride': args.stride,
            'winlen': args.winlen,
            'insize': 1,
            'size': args.size,
            'alphabet_info': alphabet_info
        }
        model_metadata = {
            'reverse': args.reverse,
            'standardize': args.standardize
        }
        net_clone = helpers.load_model(args.model,
                                       model_metadata=model_metadata,
                                       **model_kwargs)
        log.write('* Network has {} parameters.\n'.format(
            sum(p.nelement() for p in net_clone.parameters())))

        if not alphabet_info.is_compatible_model(net_clone):
            sys.stderr.write(
                '* ERROR: Model and mapped signal files contain ' +
                'incompatible alphabet definitions (including modified ' +
                'bases).')
            sys.exit(1)
        if layers.is_cat_mod_model(net_clone):
            log.write('* Loaded categorical modified base model.\n')
            if not alphabet_info.contains_modified_bases():
                sys.stderr.write(
                    '* ERROR: Modified bases model specified, but mapped ' +
                    'signal file does not contain modified bases.')
                sys.exit(1)
        else:
            log.write('* Loaded standard (canonical bases-only) model.\n')
            if alphabet_info.contains_modified_bases():
                sys.stderr.write(
                    '* ERROR: Standard (canonical bases only) model ' +
                    'specified, but mapped signal file does contains ' +
                    'modified bases.')
                sys.exit(1)
        if layers.is_delta_model(net_clone) and model_metadata.standardize:
            log.write('*' * 60 + '\n* WARNING: Delta-scaling models trained ' +
                      'with --standardize are not compatible with Guppy.\n' +
                      '*' * 60)
        log.write('* Dumping initial model\n')
        helpers.save_model(net_clone, args.outdir, 0)
    else:
        net_clone = None

    if res_info.is_multi_gpu:
        # so that processes 1,2,3.. don't try to load before process 0 has
        # saved
        torch.distributed.barrier()
        log.write('* MultiGPU process {}'.format(args.local_rank))
        log.write(': loading initial model saved by process 0\n')
        saved_startmodel_path = os.path.join(
            args.outdir, 'model_checkpoint_00000.checkpoint')
        network = helpers.load_model(saved_startmodel_path).to(res_info.device)
        network_metadata = parse_network_metadata(network)
        # Wrap network for training in the DistributedDataParallel structure
        network = torch.nn.parallel.DistributedDataParallel(
            network,
            device_ids=[args.local_rank],
            output_device=args.local_rank)
    else:
        log.write('* Loading model onto device\n')
        network = net_clone.to(res_info.device)
        network_metadata = parse_network_metadata(network)
        net_clone = None

    log.write('* Estimating filter parameters from training data\n')
    stride = guess_model_stride(network)
    optimiser = torch.optim.AdamW(network.parameters(),
                                  lr=args.lr_max,
                                  betas=args.adam,
                                  weight_decay=args.weight_decay,
                                  eps=args.eps)

    lr_warmup = args.lr_min if args.lr_warmup is None else args.lr_warmup
    adam_beta1, _ = args.adam
    if args.warmup_batches >= args.niteration:
        sys.stderr.write('* Error: --warmup_batches must be < --niteration\n')
        sys.exit(1)
    warmup_fraction = args.warmup_batches / args.niteration
    # Pytorch OneCycleLR crashes if pct_start==1 (i.e. warmup_fraction==1)
    lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
        optimiser,
        args.lr_max,
        total_steps=args.niteration,
        # pct_start is really fractional, not percent
        pct_start=warmup_fraction,
        div_factor=args.lr_max / lr_warmup,
        final_div_factor=lr_warmup / args.lr_min,
        cycle_momentum=(args.min_momentum is not None),
        base_momentum=adam_beta1 if args.min_momentum is None \
        else args.min_momentum,
        max_momentum=adam_beta1
    )
    log.write(
        ('* Learning rate increases from {:.2e} to {:.2e} over {} ' +
         'iterations using cosine schedule.\n').format(lr_warmup, args.lr_max,
                                                       args.warmup_batches))
    log.write(('* Then learning rate decreases from {:.2e} to {:.2e} over ' +
               '{} iterations using cosine schedule.\n').format(
                   args.lr_max, args.lr_min,
                   args.niteration - args.warmup_batches))

    if args.gradient_clip_num_mads is None:
        log.write('* No gradient clipping\n')
        rolling_mads = None
    else:
        nparams = len([p for p in network.parameters() if p.requires_grad])
        if nparams == 0:
            rolling_mads = None
            log.write('* No gradient clipping due to missing parameters\n')
        else:
            rolling_mads = maths.RollingMAD(nparams,
                                            args.gradient_clip_num_mads)
            log.write((
                '* Gradients will be clipped (by value) at {:3.2f} MADs ' +
                'above the median of the last {} gradient maximums.\n').format(
                    rolling_mads.n_mads, rolling_mads.window))

    net_info = NETWORK_INFO(net=network,
                            net_clone=net_clone,
                            metadata=network_metadata,
                            stride=stride)
    optim_info = OPTIM_INFO(optimiser=optimiser,
                            lr_warmup=lr_warmup,
                            lr_scheduler=lr_scheduler,
                            rolling_mads=rolling_mads)

    return net_info, optim_info
Example #7
0
def main():
    args = parser.parse_args()
    np.random.seed(args.seed)

    helpers.prepare_outdir(args.outdir, args.overwrite)

    device = helpers.set_torch_device(args.device)

    log = helpers.Logger(os.path.join(args.outdir, 'model.log'), args.quiet)
    log.write(helpers.formatted_env_info(device))

    if args.input_strand_list is not None:
        read_ids = list(set(helpers.get_read_ids(args.input_strand_list)))
        log.write('* Will train from a subset of {} strands\n'.format(
            len(read_ids)))
    else:
        log.write('* Reads not filtered by id\n')
        read_ids = 'all'

    if args.limit is not None:
        log.write('* Limiting number of strands to {}\n'.format(args.limit))

    with mapped_signal_files.HDF5Reader(args.input) as per_read_file:
        alphabet_info = per_read_file.get_alphabet_information()
        assert alphabet_info.nbase == 4, (
            'Squiggle prediction with modified base training data is ' +
            'not currenly supported.')
        read_data = per_read_file.get_multiple_reads(read_ids,
                                                     max_reads=args.limit)
        # read_data now contains a list of reads
        # (each an instance of the Read class defined in mapped_signal_files.py, based on dict)

    if len(read_data) == 0:
        log.write('* No reads remaining for training, exiting.\n')
        exit(1)
    log.write('* Loaded {} reads.\n'.format(len(read_data)))

    # Get parameters for filtering by sampling a subset of the reads
    # Result is a tuple median mean_dwell, mad mean_dwell
    filter_parameters = chunk_selection.sample_filter_parameters(
        read_data, args.sample_nreads_before_filtering, args.target_len,
        args.filter_mean_dwell, args.filter_max_dwell)

    log.write(
        "* Sampled {} chunks: median(mean_dwell)={:.2f}, mad(mean_dwell)={:.2f}\n"
        .format(args.sample_nreads_before_filtering,
                filter_parameters.median_meandwell,
                filter_parameters.mad_meandwell))

    conv_net = create_convolution(args.size, args.depth, args.winlen)
    nparam = sum([p.data.detach().numpy().size for p in conv_net.parameters()])
    log.write('* Created network.  {} parameters\n'.format(nparam))
    log.write('* Depth {} layers ({} residual layers)\n'.format(
        args.depth + 2, args.depth))
    log.write('* Window width {}\n'.format(args.winlen))
    log.write('* Context +/- {} bases\n'.format(
        (args.depth + 2) * (args.winlen // 2)))

    conv_net = conv_net.to(device)

    optimizer = torch.optim.Adam(conv_net.parameters(),
                                 lr=args.lr_max,
                                 betas=args.adam,
                                 weight_decay=args.weight_decay,
                                 eps=args.eps)

    lr_scheduler = optim.ReciprocalLR(optimizer, args.lr_decay)

    rejection_dict = defaultdict(
        lambda: 0
    )  # To count the numbers of different sorts of chunk rejection
    t0 = time.time()
    score_smoothed = helpers.WindowedExpSmoother()
    total_chunks = 0

    for i in range(args.niteration):
        # If the logging threshold is 0 then we log all chunks, including those rejected, so pass the log
        # object into assemble_batch
        # chunk_batch is a list of dicts.
        chunk_batch, batch_rejections = chunk_selection.assemble_batch(
            read_data,
            args.batch_size,
            args.target_len,
            filter_parameters,
            chunk_len_means_sequence_len=True)
        if len(chunk_batch) < args.batch_size:
            log.write('* Warning: only {} chunks passed filters.\n'.format(
                len(chunk_batch)))

        total_chunks += len(chunk_batch)
        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        # Shape of input needs to be seqlen x batchsize x embedding_dimension
        embedded_matrix = [
            embed_sequence(d['sequence'], alphabet=None) for d in chunk_batch
        ]
        seq_embed = torch.tensor(embedded_matrix).permute(1, 0, 2).to(device)
        # Shape of labels is a flat vector
        batch_signal = torch.tensor(
            np.concatenate([d['current'] for d in chunk_batch])).to(device)
        # Shape of lens is also a flat vector
        batch_siglen = torch.tensor([len(d['current'])
                                     for d in chunk_batch]).to(device)

        #print("First 10 elements of first sequence in batch",seq_embed[:10,0,:])
        #print("First 10 elements of signal batch",batch_signal[:10])
        #print("First 10 lengths",batch_siglen[:10])

        optimizer.zero_grad()

        predicted_squiggle = conv_net(seq_embed)
        batch_loss = squiggle_match_loss(predicted_squiggle, batch_signal,
                                         batch_siglen, args.back_prob)
        fval = batch_loss.sum() / float(batch_siglen.sum())

        fval.backward()
        optimizer.step()

        score_smoothed.update(float(fval))

        if (i + 1) % args.save_every == 0:
            helpers.save_model(conv_net, args.outdir,
                               (i + 1) // args.save_every)
            log.write('C')
        else:
            log.write('.')

        if (i + 1) % DOTROWLENGTH == 0:
            tn = time.time()
            dt = tn - t0
            t = ' {:5d} {:7.5f}  {:5.2f}s'
            log.write(
                t.format((i + 1) // DOTROWLENGTH, score_smoothed.value, dt))
            t0 = tn
            # Write summary of chunk rejection reasons
            if args.full_filter_status:
                for k, v in rejection_dict.items():
                    log.write(" {}:{} ".format(k, v))
            else:
                n_tot = n_fail = 0
                for k, v in rejection_dict.items():
                    n_tot += v
                    if k != 'pass':
                        n_fail += v
                log.write("  {:.1%} chunks filtered".format(n_fail / n_tot))
            log.write("\n")

        lr_scheduler.step()

    helpers.save_model(conv_net, args.outdir)