Example #1
0
def test_MAVP():
    a = pd.Series([1, 5, 3, 4, 7, 3, 8, 1, 4, 6],
                  index=range(10, 20),
                  dtype=float)
    b = pd.Series([2, 4, 2, 4, 2, 4, 2, 4, 2, 4],
                  index=range(20, 30),
                  dtype=float)
    result = talib.MAVP(a, b, minperiod=2, maxperiod=4)
    assert isinstance(result, pd.Series)
    assert_np_arrays_equal(
        result.values,
        [np.nan, np.nan, np.nan, 3.25, 5.5, 4.25, 5.5, 4.75, 2.5, 4.75])
    assert_np_arrays_equal(result.index, range(10, 20))
    sma2 = talib.SMA(a, 2)
    assert isinstance(sma2, pd.Series)
    assert_np_arrays_equal(sma2.index, range(10, 20))
    assert_np_arrays_equal(result.values[4::2], sma2.values[4::2])
    sma4 = talib.SMA(a, 4)
    assert isinstance(sma4, pd.Series)
    assert_np_arrays_equal(sma4.index, range(10, 20))
    assert_np_arrays_equal(result.values[3::2], sma4.values[3::2])
    result = talib.MAVP(a, b, minperiod=2, maxperiod=3)
    assert isinstance(result, pd.Series)
    assert_np_arrays_equal(result.values, [
        np.nan, np.nan, 4, 4, 5.5, 4.666666666666667, 5.5, 4, 2.5,
        3.6666666666666665
    ])
    assert_np_arrays_equal(result.index, range(10, 20))
    sma3 = talib.SMA(a, 3)
    assert isinstance(sma3, pd.Series)
    assert_np_arrays_equal(sma3.index, range(10, 20))
    assert_np_arrays_equal(result.values[2::2], sma2.values[2::2])
    assert_np_arrays_equal(result.values[3::2], sma3.values[3::2])
Example #2
0
 def MAVP(Close,
          periods,
          minperiod=2,
          maxperiod=30,
          matype=0):  # periods should be array
     return Close.apply(
         lambda col: ta.MAVP(col, periods, minperiod, maxperiod, matype),
         axis=0)
Example #3
0
def overlap_process(event):
    print(event.widget.get())
    overlap = event.widget.get()

    upperband, middleband, lowerband = ta.BBANDS(close,
                                                 timeperiod=5,
                                                 nbdevup=2,
                                                 nbdevdn=2,
                                                 matype=0)

    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(overlap, fontproperties="SimHei")

    if overlap == '布林线':
        pass
    elif overlap == '双指数移动平均线':
        real = ta.DEMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '指数移动平均线 ':
        real = ta.EMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '希尔伯特变换——瞬时趋势线':
        real = ta.HT_TRENDLINE(close)
        axes[1].plot(real, 'r-')
    elif overlap == '考夫曼自适应移动平均线':
        real = ta.KAMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '移动平均线':
        real = ta.MA(close, timeperiod=30, matype=0)
        axes[1].plot(real, 'r-')
    elif overlap == 'MESA自适应移动平均':
        mama, fama = ta.MAMA(close, fastlimit=0, slowlimit=0)
        axes[1].plot(mama, 'r-')
        axes[1].plot(fama, 'g-')
    elif overlap == '变周期移动平均线':
        real = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)
        axes[1].plot(real, 'r-')
    elif overlap == '简单移动平均线':
        real = ta.SMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '三指数移动平均线(T3)':
        real = ta.T3(close, timeperiod=5, vfactor=0)
        axes[1].plot(real, 'r-')
    elif overlap == '三指数移动平均线':
        real = ta.TEMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '三角形加权法 ':
        real = ta.TRIMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    elif overlap == '加权移动平均数':
        real = ta.WMA(close, timeperiod=30)
        axes[1].plot(real, 'r-')
    plt.show()
Example #4
0
def MAVP(close, periods, minperiod=2, maxperiod=30, matype=0):
    ''' Moving average with variable period

    分组: Overlap Studies 重叠研究

    简介:

    分析和应用:

    real = MAVP(close, periods, minperiod=2, maxperiod=30, matype=0)
    '''
    return talib.MAVP(close, periods, minperiod, maxperiod, matype)
Example #5
0
def mavp(close, graph=False, **kwargs):
    '''
    MAVP - Moving average with variable period
    '''
    result = talib.MAVP(close, **kwargs)
    df = pd.concat([pd.DataFrame(close), pd.DataFrame(result)], axis=1)
    df.columns = ['close', 'mavp']
    if graph:
        title = 'MAVP - Moving average with variable period'
        style = ['r-'] + ['--'] * (len(df.columns) - 1)
        fname = '08_mavp.png'
        make_graph(title, df, style=style, fname=fname)
    return df
Example #6
0
def test_MAVP():
    a = pl.Series([1, 5, 3, 4, 7, 3, 8, 1, 4, 6], dtype=pl.Float64)
    b = pl.Series([2, 4, 2, 4, 2, 4, 2, 4, 2, 4], dtype=pl.Float64)
    result = talib.MAVP(a, b, minperiod=2, maxperiod=4)
    assert isinstance(result, pl.Series)
    assert_np_arrays_equal(
        result.to_numpy(),
        [np.nan, np.nan, np.nan, 3.25, 5.5, 4.25, 5.5, 4.75, 2.5, 4.75])
    sma2 = talib.SMA(a, 2)
    assert isinstance(sma2, pl.Series)
    assert_np_arrays_equal(result.to_numpy()[4::2], sma2.to_numpy()[4::2])
    sma4 = talib.SMA(a, 4)
    assert isinstance(sma4, pl.Series)
    assert_np_arrays_equal(result.to_numpy()[3::2], sma4.to_numpy()[3::2])
    result = talib.MAVP(a, b, minperiod=2, maxperiod=3)
    assert isinstance(result, pl.Series)
    assert_np_arrays_equal(result.to_numpy(), [
        np.nan, np.nan, 4, 4, 5.5, 4.666666666666667, 5.5, 4, 2.5,
        3.6666666666666665
    ])
    sma3 = talib.SMA(a, 3)
    assert isinstance(sma3, pl.Series)
    assert_np_arrays_equal(result.to_numpy()[2::2], sma2.to_numpy()[2::2])
    assert_np_arrays_equal(result.to_numpy()[3::2], sma3.to_numpy()[3::2])
Example #7
0
	def overlap(self):
		upper, middle, lower = talib.BBANDS(self.close,timeperiod=5,nbdevup=2,nbdevdn=2,matype=0)
		EMA = talib.EMA(self.close,self.period)
		HT_trendline = talib.HT_TRENDLINE(self.close)
		KAMA = talib.KAMA(self.close,self.period)
		MA = talib.MA(self.close,self.period,matype=0)
		mama, fama = talib.MAMA(self.close,fastlimit = 0.5,slowlimit = 0.05)
		mavp = talib.MAVP(self.close, minperiod = 5,maxperiod = 30,matype=0)
		midpoint = talib.MIDPOINT(self.close,self.period)
		midprice = talib.MIDPRICE(self.high,self.low,self.period)
		sar = talib.SAR(self.high,self.low,acceleration = 0, maximum = 0)
		sarext = talib.SAREXT(self.high,self.low,startvalue=0,offsetonreverse=0,accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0)
		sma = talib.SMA(self.close,self.period)
		t3 = talib.T3(self.close, self.period, vfactor = 0)
		tema = talib.TEMA(self.close,self.period)
		trima = talib.TRIMA(self.close,period)
		wma = talib.WMA(self.close, self.period)
Example #8
0
def mavp(
    client,
    symbol,
    timeframe="6m",
    col="close",
    periods=None,
    minperiod=2,
    maxperiod=30,
    matype=0,
):
    """This will return a dataframe of moving average with variable period
     for the given symbol across the given timeframe

    Args:
        client (pyEX.Client); Client
        symbol (string); Ticker
        timeframe (string); timeframe to use, for pyEX.chart
        col (string); column to use to calculate
        periods (int); periods
        minperiod (int); minperiod
        maxperiod (int); maxperiod
        matype (int); matype
    Returns:
        DataFrame: result
    """
    df = client.chartDF(symbol, timeframe)
    if periods is None:
        periods = [30]
    periods = tolist(periods)

    df = client.chartDF(symbol, timeframe)

    build = {col: df[col].values}
    for per in periods:
        build["mavp-{}".format(per)] = t.MAVP(
            df[col].values.astype(float),
            per,
            minperiod=minperiod,
            maxperiod=maxperiod,
            matype=matype,
        )
    return pd.DataFrame(build)
Example #9
0
def add_MAVP(
    self,
    periods,
    minperiod=2,
    maxperiod=30,
    matype=0,
    type="line",
    color="secondary",
    **kwargs
):
    """Moving Average with Variable Period.

    Parameters
    ----------

        periods : Series or array
            Moving Average period over timeframe to analyze, as a 1-dimensional
            shape of same length as chart.

    """
    if not self.has_close:
        raise Exception()

    utils.kwargs_check(kwargs, VALID_TA_KWARGS)
    if "kind" in kwargs:
        type = kwargs["kind"]

    if isinstance(periods, pd.Series):
        periods = periods.values
    elif isinstance(periods, np.ndarray):
        pass
    else:
        raise TypeError(
            "Invalid periods {0}. " "It should be Series or array.".format(periods)
        )

    name = "MAVP({},{})".format(str(minperiod), str(maxperiod))
    self.pri[name] = dict(type=type, color=color)
    self.ind[name] = talib.MAVP(
        self.df[self.cl].values, periods, minperiod, maxperiod, matype
    )
Example #10
0
def create_tas(bars,
                verbose=False,
                ohlcv_cols=['Adj_High', 'Adj_Low', 'Adj_Open', 'Adj_Close', 'Adj_Volume'],
                return_df=False,
                cl=True,
                tp=True):
    """
    This is basically set up for daily stock data.  Other time frames would need adapting probably.

    :param bars: resampled pandas dataframe with open, high, low, close, volume, and typical_price columns
    :param verbose: boolean, if true, prints more debug
    :param ohlcv_cols: list of strings; the column names for high, low, open, close, and volume
    :param cl: use the close price to make TAs
    :param tp: calcuclate typical price and use it for TAs

    :returns: pandas dataframe with TA signals calculated (modifies dataframe in place)
    """
    h, l, o, c, v = ohlcv_cols
    if 'typical_price' not in bars.columns and tp:
        bars['typical_price'] = bars[[h, l, c]].mean(axis=1)

    # bollinger bands
    # strange bug, if values are small, need to multiply to larger value for some reason
    mult = 1
    last_close = bars.iloc[0][c]
    lc_m = last_close * mult
    while lc_m < 1:
        mult *= 10
        lc_m = last_close * mult

    if verbose:
        print('using multiplier of', mult)

    if tp:
        mult_tp = bars['typical_price'].values * mult

    mult_close = bars[c].values * mult
    mult_open = bars[o].values * mult
    mult_high = bars[h].values * mult
    mult_low = bars[l].values * mult
    # for IB data, the volume is integer, but needs to be float for talib
    volume = bars[v].astype('float').values


    # ADR - average daily range
    # http://forextraininggroup.com/using-adr-average-daily-range-find-short-term-trading-opportunities/
    # TODO

    ### overlap studies
    # bollinger bands -- should probably put these into another indicator
    if cl:
        upper_cl, middle_cl, lower_cl = talib.BBANDS(mult_close,
                                        timeperiod=10,
                                        nbdevup=2,
                                        nbdevdn=2)

        bars['bband_u_cl'] = upper_cl / mult
        bars['bband_m_cl'] = middle_cl / mult
        bars['bband_l_cl'] = lower_cl / mult
        bars['bband_u_cl_diff'] = bars['bband_u_cl'] - bars[c]
        bars['bband_m_cl_diff'] = bars['bband_m_cl'] - bars[c]
        bars['bband_l_cl_diff'] = bars['bband_l_cl'] - bars[c]
        bars['bband_u_cl_diff_hi'] = bars['bband_u_cl'] - bars[h]
        bars['bband_l_cl_diff_lo'] = bars['bband_l_cl'] - bars[l]
        # bars['bband_u_cl'].fillna(method='bfill', inplace=True)
        # bars['bband_m_cl'].fillna(method='bfill', inplace=True)
        # bars['bband_l_cl'].fillna(method='bfill', inplace=True)

    if tp:
        upper_tp, middle_tp, lower_tp = talib.BBANDS(mult_tp,
                                        timeperiod=10,
                                        nbdevup=2,
                                        nbdevdn=2)

        bars['bband_u_tp'] = upper_tp / mult
        bars['bband_m_tp'] = middle_tp / mult
        bars['bband_l_tp'] = lower_tp / mult
        bars['bband_u_tp_diff'] = bars['bband_u_tp'] - bars['typical_price']
        bars['bband_m_tp_diff'] = bars['bband_m_tp'] - bars['typical_price']
        bars['bband_l_tp_diff'] = bars['bband_l_tp'] - bars['typical_price']
        bars['bband_u_tp_diff_hi'] = bars['bband_u_tp'] - bars[h]
        bars['bband_l_tp_diff_lo'] = bars['bband_l_tp'] - bars[l]
        # think this is already taken care of at the end...check
        # bars['bband_u_tp'].fillna(method='bfill', inplace=True)
        # bars['bband_m_tp'].fillna(method='bfill', inplace=True)
        # bars['bband_l_tp'].fillna(method='bfill', inplace=True)

    # Double Exponential Moving Average
    if cl:
        bars['dema_cl'] = talib.DEMA(mult_close, timeperiod=30) / mult
        bars['dema_cl_diff'] = bars['dema_cl'] - bars[c]

    if tp:
        bars['dema_tp'] = talib.DEMA(mult_tp, timeperiod=30) / mult
        bars['dema_tp_diff'] = bars['dema_tp'] - bars['typical_price']


    # exponential moving Average
    if cl:
        bars['ema_cl'] = talib.EMA(mult_close, timeperiod=30) / mult
        bars['ema_cl_diff'] = bars['ema_cl'] - bars[c]

    if tp:
        bars['ema_tp'] = talib.EMA(mult_tp, timeperiod=30) / mult
        bars['ema_tp_diff'] = bars['ema_tp'] - bars['typical_price']

    # Hilbert Transform - Instantaneous Trendline - like a mva but a bit different, should probably take slope or
    # use in another indicator
    if cl:
        bars['ht_tl_cl'] = talib.HT_TRENDLINE(mult_close) / mult
        bars['ht_tl_cl_diff'] = bars['ht_tl_cl'] - bars[c]

    if tp:
        bars['ht_tl_tp'] = talib.HT_TRENDLINE(mult_tp) / mult
        bars['ht_tl_tp_diff'] = bars['ht_tl_tp'] - bars['typical_price']

    # KAMA - Kaufman's Adaptative Moving Average -- need to take slope or something
    if cl:
        bars['kama_cl'] = talib.KAMA(mult_close, timeperiod=30) / mult
        bars['kama_cl_diff'] = bars['kama_cl'] - bars[c]

    if tp:
        bars['kama_tp'] = talib.KAMA(mult_tp, timeperiod=30) / mult
        bars['kama_tp_diff'] = bars['kama_tp'] - bars['typical_price']

    # MESA Adaptive Moving Average -- getting TA_BAD_PARAM error
    # mama_cl, fama_cl = talib.MAMA(mult_close, fastlimit=100, slowlimit=100) / mult
    # mama_tp, fama_tp = talib.MAMA(mult_tp, fastlimit=100, slowlimit=100) / mult
    # mama_cl_osc = (mama_cl - fama_cl) / mama_cl
    # mama_tp_osc = (mama_tp - fama_tp) / mama_tp
    # bars['mama_cl'] = mama_cl
    # bars['mama_tp'] = mama_tp
    # bars['fama_cl'] = fama_cl
    # bars['fama_tp'] = fama_tp
    # bars['mama_cl_osc'] = mama_cl_osc
    # bars['mama_tp_osc'] = mama_tp_osc

    # Moving average with variable period
    if cl:
        bars['mavp_cl'] = talib.MAVP(mult_close, np.arange(mult_close.shape[0]).astype(np.float64), minperiod=2, maxperiod=30, matype=0) / mult
        bars['mavp_cl_diff'] = bars['mavp_cl'] - bars[c]

    if tp:
        bars['mavp_tp'] = talib.MAVP(mult_tp, np.arange(mult_tp.shape[0]).astype(np.float64), minperiod=2, maxperiod=30, matype=0) / mult
        bars['mavp_tp_diff'] = bars['mavp_tp'] - bars['typical_price']

    # midpoint over period
    if cl:
        bars['midp_cl'] = talib.MIDPOINT(mult_close, timeperiod=14) / mult
        bars['midp_cl_diff'] = bars['midp_cl'] - bars[c]

    if tp:
        bars['midp_tp'] = talib.MIDPOINT(mult_tp, timeperiod=14) / mult
        bars['midp_tp_diff'] = bars['midp_tp'] - bars['typical_price']

    # midpoint price over period
    bars['midpr'] = talib.MIDPRICE(mult_high, mult_low, timeperiod=14) / mult
    if cl:
        bars['midpr_diff_cl'] = bars['midpr'] - bars[c]

    if tp:
        bars['midpr_diff_tp'] = bars['midpr'] - bars['typical_price']


    # parabolic sar
    bars['sar'] = talib.SAR(mult_high, mult_low, acceleration=0.02, maximum=0.2) / mult

    if cl:
        bars['sar_diff_cl'] = bars['sar'] - bars[c]

    if tp:
        bars['sar_diff_tp'] = bars['sar'] - bars['typical_price']
    # need to make an oscillator for this

    # simple moving average
    # 10, 20, 30, 40 day
    if cl:
        bars['sma_10_cl'] = talib.SMA(mult_close, timeperiod=10) / mult
        bars['sma_20_cl'] = talib.SMA(mult_close, timeperiod=20) / mult
        bars['sma_30_cl'] = talib.SMA(mult_close, timeperiod=30) / mult
        bars['sma_40_cl'] = talib.SMA(mult_close, timeperiod=40) / mult

    if tp:
        bars['sma_10_tp'] = talib.SMA(mult_tp, timeperiod=10) / mult
        bars['sma_20_tp'] = talib.SMA(mult_tp, timeperiod=20) / mult
        bars['sma_30_tp'] = talib.SMA(mult_tp, timeperiod=30) / mult
        bars['sma_40_tp'] = talib.SMA(mult_tp, timeperiod=40) / mult

    # triple exponential moving average
    if cl:
        bars['tema_cl'] = talib.TEMA(mult_close, timeperiod=30) / mult
        bars['tema_cl_diff'] = bars['tema_cl'] - bars[c]

    if tp:
        bars['tema_tp'] = talib.TEMA(mult_tp, timeperiod=30) / mult
        bars['tema_tp_diff'] = bars['tema_tp'] - bars['typical_price']

    # triangular ma
    if cl:
        bars['trima_cl'] = talib.TRIMA(mult_close, timeperiod=30) / mult
        bars['trima_cl_diff'] = bars['trima_cl'] - bars[c]

    if tp:
        bars['trima_tp'] = talib.TRIMA(mult_tp, timeperiod=30) / mult
        bars['trima_tp_diff'] = bars['trima_tp'] - bars['typical_price']

    # weighted moving average
    if cl:
        bars['wma_cl'] = talib.WMA(mult_close, timeperiod=30) / mult
        bars['wma_cl_diff'] = bars['wma_cl'] - bars[c]

    if tp:
        bars['wma_tp'] = talib.WMA(mult_tp, timeperiod=30) / mult
        bars['wma_tp_diff'] = bars['wma_tp'] - bars['typical_price']

    #### momentum indicators  -- for now left out some of those with unstable periods (maybe update and included them, not sure)

    # Average Directional Movement Index - 0 to 100 I think
    bars['adx_14'] = talib.ADX(mult_high, mult_low, mult_close, timeperiod=14)
    bars['adx_5'] = talib.ADX(mult_high, mult_low, mult_close, timeperiod=5)

    # Average Directional Movement Index Rating
    bars['adxr'] = talib.ADXR(mult_high, mult_low, mult_close, timeperiod=14)

    # Absolute Price Oscillator
    # values around -100 to +100
    if cl:
        bars['apo_cl'] = talib.APO(mult_close, fastperiod=12, slowperiod=26, matype=0)

    if tp:
        bars['apo_tp'] = talib.APO(mult_tp, fastperiod=12, slowperiod=26, matype=0)

    # Aroon and Aroon Oscillator 0-100, so don't need to renormalize
    arup, ardn = talib.AROON(mult_high, mult_low, timeperiod=14)
    bars['arup'] = arup
    bars['ardn'] = ardn

    # linearly related to aroon, just aroon up - aroon down
    bars['aroonosc'] = talib.AROONOSC(mult_high, mult_low, timeperiod=14)

    # balance of power - ratio of values so don't need to re-normalize
    bars['bop'] = talib.BOP(mult_open, mult_high, mult_low, mult_close)

    # Commodity Channel Index
    # around -100 to + 100
    bars['cci'] = talib.CCI(mult_high, mult_low, mult_close, timeperiod=14)

    # Chande Momentum Oscillator
    if cl:
        bars['cmo_cl'] = talib.CMO(mult_close, timeperiod=14)

    if tp:
        bars['cmo_tp'] = talib.CMO(mult_tp, timeperiod=14)

    # dx - Directional Movement Index
    bars['dx'] = talib.DX(mult_high, mult_low, mult_close, timeperiod=14)

    # Moving Average Convergence/Divergence
    # https://www.quantopian.com/posts/how-does-the-talib-compute-macd-why-the-value-is-different
    # macd diff btw fast and slow EMA
    if cl:
        macd_cl, macdsignal_cl, macdhist_cl = talib.MACD(mult_close, fastperiod=12, slowperiod=26, signalperiod=9)
        bars['macd_cl'] = macd_cl / mult
        bars['macdsignal_cl'] = macdsignal_cl / mult
        bars['macdhist_cl'] = macdhist_cl / mult

    if tp:
        macd_tp, macdsignal_tp, macdhist_tp = talib.MACD(mult_tp, fastperiod=12, slowperiod=26, signalperiod=9)
        bars['macd_tp'] = macd_tp / mult
        bars['macdsignal_tp'] = macdsignal_tp / mult
        bars['macdhist_tp'] = macdhist_tp / mult

    # mfi - Money Flow Index
    bars['mfi'] = talib.MFI(mult_high, mult_low, mult_close, volume, timeperiod=14)

    # minus di - Minus Directional Indicator
    bars['mdi'] = talib.MINUS_DI(mult_high, mult_low, mult_close, timeperiod=14)

    # Minus Directional Movement
    bars['mdm'] = talib.MINUS_DM(mult_high, mult_low, timeperiod=14)

    # note: too small of a timeperiod will result in junk data...I think.  or at least very discretized
    if cl:
        bars['mom_cl'] = talib.MOM(mult_close, timeperiod=14) / mult
    # bars['mom_cl'].fillna(method='bfill', inplace=True)

    if tp:
        bars['mom_tp'] = talib.MOM(mult_tp, timeperiod=14) / mult
    # bars['mom_tp'].fillna(method='bfill', inplace=True)

    # plus di - Plus Directional Indicator
    bars['pldi'] = talib.PLUS_DI(mult_high, mult_low, mult_close, timeperiod=14)

    # Plus Directional Movement
    bars['pldm'] = talib.PLUS_DM(mult_high, mult_low, timeperiod=14)

    # percentage price Oscillator
    # matype explanation: https://www.quantopian.com/posts/moving-averages
    if cl:
        bars['ppo_cl'] = talib.PPO(mult_close, fastperiod=12, slowperiod=26, matype=1)
        if bars['ppo_cl'].isnull().all():
            bars['ppo_cl_signal'] = 0
        else:
            bars['ppo_cl_signal'] = talib.EMA(bars['ppo_cl'].bfill().values, timeperiod=9)

    if tp:
        bars['ppo_tp'] = talib.PPO(mult_tp, fastperiod=12, slowperiod=26, matype=1)

    # rate of change -- really only need one
    # if cl:
    #     bars['roc_cl'] = talib.ROC(mult_close, timeperiod=10)
    #
    # if tp:
    #     bars['roc_tp'] = talib.ROC(mult_tp, timeperiod=10)

    # rocp - Rate of change Percentage: (price-prevPrice)/prevPrice
    if cl:
        bars['rocp_cl'] = talib.ROCP(mult_close, timeperiod=10)

    if tp:
        bars['rocp_tp'] = talib.ROCP(mult_tp, timeperiod=10)

    # rocr - Rate of change ratio: (price/prevPrice)
    # bars['rocr_cl'] = talib.ROCR(mult_close, timeperiod=10)
    # bars['rocr_tp'] = talib.ROCR(mult_tp, timeperiod=10)
    #
    # # Rate of change ratio 100 scale: (price/prevPrice)*100
    # bars['rocr_cl_100'] = talib.ROCR100(mult_close, timeperiod=10)
    # bars['rocr_tp_100'] = talib.ROCR100(mult_tp, timeperiod=10)

    # Relative Strength Index
    if cl:
        bars['rsi_cl_14'] = talib.RSI(mult_close, timeperiod=14)
        bars['rsi_cl_5'] = talib.RSI(mult_close, timeperiod=5)

    if tp:
        bars['rsi_tp'] = talib.RSI(mult_tp, timeperiod=14)

    # stochastic oscillator - % of price diffs, so no need to rescale
    slowk, slowd = talib.STOCH(mult_high, mult_low, mult_close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
    fastk, fastd = talib.STOCHF(mult_high, mult_low, mult_close, fastk_period=5, fastd_period=3, fastd_matype=0)
    bars['slowk'] = slowk
    bars['slowd'] = slowd
    bars['fastk'] = fastk
    bars['fastd'] = fastd

    # Stochastic Relative Strength Index
    if cl:
        fastk_cl, fastd_cl = talib.STOCHRSI(mult_close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
        bars['strsi_cl_k'] = fastk_cl
        bars['strsi_cl_d'] = fastd_cl

    if tp:
        fastk_tp, fastd_tp = talib.STOCHRSI(mult_tp, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
        bars['strsi_tp_k'] = fastk_tp
        bars['strsi_tp_d'] = fastd_tp

    # trix - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    if cl:
        if bars.shape[0] > 90:
            bars['trix_cl_30'] = talib.TRIX(mult_close, timeperiod=30)
            bars['trix_cl_30_signal'] = talib.EMA(bars['trix_cl_30'].bfill().values, timeperiod=20)

        bars['trix_cl_14'] = talib.TRIX(mult_close, timeperiod=14)
        if bars['trix_cl_14'].isnull().all():
            bars['trix_cl_14_signal'] = 0
        else:
            bars['trix_cl_14_signal'] = talib.EMA(bars['trix_cl_14'].bfill().values, timeperiod=9)
        bars['trix_cl_12'] = talib.TRIX(mult_close, timeperiod=12)
        if bars['trix_cl_12'].isnull().all():
            bars['trix_cl_12_signal'] = 0
        else:
            bars['trix_cl_12_signal'] = talib.EMA(bars['trix_cl_12'].bfill().values, timeperiod=9)
        bars['trix_cl_5'] = talib.TRIX(mult_close, timeperiod=5)
        if bars['trix_cl_5'].isnull().all():
            bars['trix_cl_5_signal'] = 0
        else:
            bars['trix_cl_5_signal'] = talib.EMA(bars['trix_cl_5'].bfill().values, timeperiod=3)

    if tp:
        bars['trix_tp'] = talib.TRIX(mult_tp, timeperiod=30)

    # ultimate Oscillator - between 0 and 100
    bars['ultosc'] = talib.ULTOSC(mult_high, mult_low, mult_close, timeperiod1=7, timeperiod2=14, timeperiod3=28)

    # williams % r  -- 0 to 100
    bars['willr'] = talib.WILLR(mult_high, mult_low, mult_close, timeperiod=14)


    ### volume indicators
    # Chaikin A/D Line
    bars['ad'] = talib.AD(mult_high, mult_low, mult_close, volume)

    # Chaikin A/D Oscillator
    bars['adosc'] = talib.ADOSC(mult_high, mult_low, mult_close, volume, fastperiod=3, slowperiod=10)

    # on balance volume
    if cl:
        bars['obv_cl'] = talib.OBV(mult_close, volume)
        if bars['obv_cl'].isnull().all():
            bars['obv_cl_ema_14'] = 0
        else:
            bars['obv_cl_ema_14'] = talib.EMA(bars['obv_cl'].values, timeperiod=14)
    if tp:
        bars['obv_tp'] = talib.OBV(mult_tp, volume)


    ### volatility indicators
    # average true range
    # Large or increasing ranges suggest traders prepared to continue to bid up or sell down a stock through the course of the day. Decreasing range suggests waning interest.
    # https://en.wikipedia.org/wiki/Average_true_range
    bars['atr_65'] = talib.ATR(mult_high, mult_low, mult_close, timeperiod=65)
    bars['atr_20'] = talib.ATR(mult_high, mult_low, mult_close, timeperiod=20)
    bars['atr_14'] = talib.ATR(mult_high, mult_low, mult_close, timeperiod=14)
    bars['atr_5'] = talib.ATR(mult_high, mult_low, mult_close, timeperiod=5)

    # Normalized Average True Range
    bars['natr_14'] = talib.NATR(mult_high, mult_low, mult_close, timeperiod=14)
    bars['natr_5'] = talib.NATR(mult_high, mult_low, mult_close, timeperiod=5)

    # true range
    bars['trange'] = talib.TRANGE(mult_high, mult_low, mult_close) / mult


    ### Cycle indicators
    # Hilbert Transform - Dominant Cycle Period
    if cl:
        bars['ht_dcp_cl'] = talib.HT_DCPERIOD(mult_close)

    if tp:
        bars['ht_dcp_tp'] = talib.HT_DCPERIOD(mult_tp)

    # Hilbert Transform - Dominant Cycle Phase
    if cl:
        bars['ht_dcph_cl'] = talib.HT_DCPHASE(mult_close)

    if tp:
        bars['ht_dcph_tp'] = talib.HT_DCPHASE(mult_tp)

    # Hilbert Transform - Phasor Components
    if cl:
        inphase_cl, quadrature_cl = talib.HT_PHASOR(mult_close)
        bars['ht_ph_cl'] = inphase_cl
        bars['ht_q_cl'] = quadrature_cl

    if tp:
        inphase_tp, quadrature_tp = talib.HT_PHASOR(mult_tp)
        bars['ht_ph_tp'] = inphase_tp
        bars['ht_q_tp'] = quadrature_tp

    # Hilbert Transform - SineWave
    if cl:
        sine_cl, leadsine_cl = talib.HT_SINE(mult_close)
        bars['ht_s_cl'] = sine_cl
        bars['ht_ls_cl'] = leadsine_cl

    if tp:
        sine_tp, leadsine_tp = talib.HT_SINE(mult_tp)
        bars['ht_s_tp'] = sine_tp
        bars['ht_ls_tp'] = leadsine_tp

    # Hilbert Transform - Trend vs Cycle Mode
    if cl:
        bars['ht_tr_cl'] = talib.HT_TRENDMODE(mult_close)

    if tp:
        bars['ht_tr_tp'] = talib.HT_TRENDMODE(mult_tp)


    bars.fillna(method='bfill', inplace=True)

    if return_df:
        return bars
Example #11
0
def add_ta_features(df, ta_settings):
    """Add technial analysis features from typical financial dataset that
    typically include columns such as "open", "high", "low", "price" and
    "volume".

    http://mrjbq7.github.io/ta-lib/

    Args:
        df(pandas.DataFrame): original DataFrame.
        ta_settings(dict): configuration.
    Returns:
        pandas.DataFrame: DataFrame with new features included.
    """

    open = df['open']
    high = df['high']
    low = df['low']
    close = df['price']
    volume = df['volume']

    if ta_settings['overlap']:

        df['ta_overlap_bbands_upper'], df['ta_overlap_bbands_middle'], df[
            'ta_overlap_bbands_lower'] = ta.BBANDS(close,
                                                   timeperiod=5,
                                                   nbdevup=2,
                                                   nbdevdn=2,
                                                   matype=0)
        df['ta_overlap_dema'] = ta.DEMA(
            close, timeperiod=15)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_overlap_ema'] = ta.EMA(close, timeperiod=30)
        df['ta_overlap_kama'] = ta.KAMA(close, timeperiod=30)
        df['ta_overlap_ma'] = ta.MA(close, timeperiod=30, matype=0)
        df['ta_overlap_mama_mama'], df['ta_overlap_mama_fama'] = ta.MAMA(close)
        period = np.random.randint(10, 20, size=len(close)).astype(float)
        df['ta_overlap_mavp'] = ta.MAVP(close,
                                        period,
                                        minperiod=2,
                                        maxperiod=30,
                                        matype=0)
        df['ta_overlap_midpoint'] = ta.MIDPOINT(close, timeperiod=14)
        df['ta_overlap_midprice'] = ta.MIDPRICE(high, low, timeperiod=14)
        df['ta_overlap_sar'] = ta.SAR(high, low, acceleration=0, maximum=0)
        df['ta_overlap_sarext'] = ta.SAREXT(high,
                                            low,
                                            startvalue=0,
                                            offsetonreverse=0,
                                            accelerationinitlong=0,
                                            accelerationlong=0,
                                            accelerationmaxlong=0,
                                            accelerationinitshort=0,
                                            accelerationshort=0,
                                            accelerationmaxshort=0)
        df['ta_overlap_sma'] = ta.SMA(close, timeperiod=30)
        df['ta_overlap_t3'] = ta.T3(close, timeperiod=5, vfactor=0)
        df['ta_overlap_tema'] = ta.TEMA(
            close, timeperiod=12)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_overlap_trima'] = ta.TRIMA(close, timeperiod=30)
        df['ta_overlap_wma'] = ta.WMA(close, timeperiod=30)

        # NOTE: Commented to avoid a lot of Nan values
        # df['ta_overlap_ht_trendline'] = ta.HT_TRENDLINE(close)

    if ta_settings['momentum']:

        df['ta_momentum_adx'] = ta.ADX(high, low, close, timeperiod=14)
        df['ta_momentum_adxr'] = ta.ADXR(high, low, close, timeperiod=14)
        df['ta_momentum_apo'] = ta.APO(close,
                                       fastperiod=12,
                                       slowperiod=26,
                                       matype=0)
        df['ta_momentum_aroondown'], df['ta_momentum_aroonup'] = ta.AROON(
            high, low, timeperiod=14)
        df['ta_momentum_aroonosc'] = ta.AROONOSC(high, low, timeperiod=14)
        df['ta_momentum_bop'] = ta.BOP(open, high, low, close)
        df['ta_momentum_cci'] = ta.CCI(high, low, close, timeperiod=14)
        df['ta_momentum_cmo'] = ta.CMO(close, timeperiod=14)
        df['ta_momentum_dx'] = ta.DX(high, low, close, timeperiod=14)
        df['ta_momentum_macd_macd'], df['ta_momentum_macd_signal'], df[
            'ta_momentum_macd_hist'] = ta.MACD(close,
                                               fastperiod=12,
                                               slowperiod=26,
                                               signalperiod=9)
        df['ta_momentum_macdext_macd'], df['ta_momentum_macdext_signal'], df[
            'ta_momentum_macdext_hist'] = ta.MACDEXT(close,
                                                     fastperiod=12,
                                                     fastmatype=0,
                                                     slowperiod=26,
                                                     slowmatype=0,
                                                     signalperiod=9,
                                                     signalmatype=0)
        df['ta_momentum_macdfix_macd'], df['ta_momentum_macdfix_signal'], df[
            'ta_momentum_macdfix_hist'] = ta.MACDFIX(close, signalperiod=9)
        df['ta_momentum_mfi'] = ta.MFI(high, low, close, volume, timeperiod=14)
        df['ta_momentum_minus_di'] = ta.MINUS_DI(high,
                                                 low,
                                                 close,
                                                 timeperiod=14)
        df['ta_momentum_minus_dm'] = ta.MINUS_DM(high, low, timeperiod=14)
        df['ta_momentum_mom'] = ta.MOM(close, timeperiod=10)
        df['ta_momentum_plus_di'] = ta.PLUS_DI(high, low, close, timeperiod=14)
        df['ta_momentum_plus_dm'] = ta.PLUS_DM(high, low, timeperiod=14)
        df['ta_momentum_ppo'] = ta.PPO(close,
                                       fastperiod=12,
                                       slowperiod=26,
                                       matype=0)
        df['ta_momentum_roc'] = ta.ROC(close, timeperiod=10)
        df['ta_momentum_rocp'] = ta.ROCP(close, timeperiod=10)
        df['ta_momentum_rocr'] = ta.ROCR(close, timeperiod=10)
        df['ta_momentum_rocr100'] = ta.ROCR100(close, timeperiod=10)
        df['ta_momentum_rsi'] = ta.RSI(close, timeperiod=14)
        df['ta_momentum_slowk'], df['ta_momentum_slowd'] = ta.STOCH(
            high,
            low,
            close,
            fastk_period=5,
            slowk_period=3,
            slowk_matype=0,
            slowd_period=3,
            slowd_matype=0)
        df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHF(
            high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0)
        df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHRSI(
            close,
            timeperiod=14,
            fastk_period=5,
            fastd_period=3,
            fastd_matype=0)
        df['ta_momentum_trix'] = ta.TRIX(
            close, timeperiod=12)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_momentum_ultosc'] = ta.ULTOSC(high,
                                             low,
                                             close,
                                             timeperiod1=7,
                                             timeperiod2=14,
                                             timeperiod3=28)
        df['ta_momentum_willr'] = ta.WILLR(high, low, close, timeperiod=14)

    if ta_settings['volume']:

        df['ta_volume_ad'] = ta.AD(high, low, close, volume)
        df['ta_volume_adosc'] = ta.ADOSC(high,
                                         low,
                                         close,
                                         volume,
                                         fastperiod=3,
                                         slowperiod=10)
        df['ta_volume_obv'] = ta.OBV(close, volume)

    if ta_settings['volatility']:

        df['ta_volatility_atr'] = ta.ATR(high, low, close, timeperiod=14)
        df['ta_volatility_natr'] = ta.NATR(high, low, close, timeperiod=14)
        df['ta_volatility_trange'] = ta.TRANGE(high, low, close)

    if ta_settings['price']:

        df['ta_price_avgprice'] = ta.AVGPRICE(open, high, low, close)
        df['ta_price_medprice'] = ta.MEDPRICE(high, low)
        df['ta_price_typprice'] = ta.TYPPRICE(high, low, close)
        df['ta_price_wclprice'] = ta.WCLPRICE(high, low, close)

    if ta_settings['cycle']:

        df['ta_cycle_ht_dcperiod'] = ta.HT_DCPERIOD(close)
        df['ta_cycle_ht_phasor_inphase'], df[
            'ta_cycle_ht_phasor_quadrature'] = ta.HT_PHASOR(close)
        df['ta_cycle_ht_trendmode'] = ta.HT_TRENDMODE(close)

        # NOTE: Commented to avoid a lot of Nan values
        # df['ta_cycle_ht_dcphase'] = ta.HT_DCPHASE(close)
        # df['ta_cycle_ht_sine_sine'], df['ta_cycle_ht_sine_leadsine'] = ta.HT_SINE(close)

    if ta_settings['pattern']:

        df['ta_pattern_cdl2crows'] = ta.CDL2CROWS(open, high, low, close)
        df['ta_pattern_cdl3blackrows'] = ta.CDL3BLACKCROWS(
            open, high, low, close)
        df['ta_pattern_cdl3inside'] = ta.CDL3INSIDE(open, high, low, close)
        df['ta_pattern_cdl3linestrike'] = ta.CDL3LINESTRIKE(
            open, high, low, close)
        df['ta_pattern_cdl3outside'] = ta.CDL3OUTSIDE(open, high, low, close)
        df['ta_pattern_cdl3starsinsouth'] = ta.CDL3STARSINSOUTH(
            open, high, low, close)
        df['ta_pattern_cdl3whitesoldiers'] = ta.CDL3WHITESOLDIERS(
            open, high, low, close)
        df['ta_pattern_cdlabandonedbaby'] = ta.CDLABANDONEDBABY(open,
                                                                high,
                                                                low,
                                                                close,
                                                                penetration=0)
        df['ta_pattern_cdladvanceblock'] = ta.CDLADVANCEBLOCK(
            open, high, low, close)
        df['ta_pattern_cdlbelthold'] = ta.CDLBELTHOLD(open, high, low, close)
        df['ta_pattern_cdlbreakaway'] = ta.CDLBREAKAWAY(open, high, low, close)
        df['ta_pattern_cdlclosingmarubozu'] = ta.CDLCLOSINGMARUBOZU(
            open, high, low, close)
        df['ta_pattern_cdlconcealbabyswall'] = ta.CDLCONCEALBABYSWALL(
            open, high, low, close)
        df['ta_pattern_cdlcounterattack'] = ta.CDLCOUNTERATTACK(
            open, high, low, close)
        df['ta_pattern_cdldarkcloudcover'] = ta.CDLDARKCLOUDCOVER(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdldoji'] = ta.CDLDOJI(open, high, low, close)
        df['ta_pattern_cdldojistar'] = ta.CDLDOJISTAR(open, high, low, close)
        df['ta_pattern_cdldragonflydoji'] = ta.CDLDRAGONFLYDOJI(
            open, high, low, close)
        df['ta_pattern_cdlengulfing'] = ta.CDLENGULFING(open, high, low, close)
        df['ta_pattern_cdleveningdojistar'] = ta.CDLEVENINGDOJISTAR(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdleveningstar'] = ta.CDLEVENINGSTAR(open,
                                                            high,
                                                            low,
                                                            close,
                                                            penetration=0)
        df['ta_pattern_cdlgapsidesidewhite'] = ta.CDLGAPSIDESIDEWHITE(
            open, high, low, close)
        df['ta_pattern_cdlgravestonedoji'] = ta.CDLGRAVESTONEDOJI(
            open, high, low, close)
        df['ta_pattern_cdlhammer'] = ta.CDLHAMMER(open, high, low, close)
        df['ta_pattern_cdlhangingman'] = ta.CDLHANGINGMAN(
            open, high, low, close)
        df['ta_pattern_cdlharami'] = ta.CDLHARAMI(open, high, low, close)
        df['ta_pattern_cdlharamicross'] = ta.CDLHARAMICROSS(
            open, high, low, close)
        df['ta_pattern_cdlhighwave'] = ta.CDLHIGHWAVE(open, high, low, close)
        df['ta_pattern_cdlhikkake'] = ta.CDLHIKKAKE(open, high, low, close)
        df['ta_pattern_cdlhikkakemod'] = ta.CDLHIKKAKEMOD(
            open, high, low, close)
        df['ta_pattern_cdlhomingpigeon'] = ta.CDLHOMINGPIGEON(
            open, high, low, close)
        df['ta_pattern_cdlidentical3crows'] = ta.CDLIDENTICAL3CROWS(
            open, high, low, close)
        df['ta_pattern_cdlinneck'] = ta.CDLINNECK(open, high, low, close)
        df['ta_pattern_cdlinvertedhammer'] = ta.CDLINVERTEDHAMMER(
            open, high, low, close)
        df['ta_pattern_cdlkicking'] = ta.CDLKICKING(open, high, low, close)
        df['ta_pattern_cdlkickingbylength'] = ta.CDLKICKINGBYLENGTH(
            open, high, low, close)
        df['ta_pattern_cdlladderbottom'] = ta.CDLLADDERBOTTOM(
            open, high, low, close)
        df['ta_pattern_cdllongleggeddoji'] = ta.CDLLONGLEGGEDDOJI(
            open, high, low, close)
        df['ta_pattern_cdllongline'] = ta.CDLLONGLINE(open, high, low, close)
        df['ta_pattern_cdlmarubozu'] = ta.CDLMARUBOZU(open, high, low, close)
        df['ta_pattern_cdlmatchinglow'] = ta.CDLMATCHINGLOW(
            open, high, low, close)
        df['ta_pattern_cdlmathold'] = ta.CDLMATHOLD(open,
                                                    high,
                                                    low,
                                                    close,
                                                    penetration=0)
        df['ta_pattern_cdlmorningdojistar'] = ta.CDLMORNINGDOJISTAR(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdlmorningstar'] = ta.CDLMORNINGSTAR(open,
                                                            high,
                                                            low,
                                                            close,
                                                            penetration=0)
        df['ta_pattern_cdllonneck'] = ta.CDLONNECK(open, high, low, close)
        df['ta_pattern_cdlpiercing'] = ta.CDLPIERCING(open, high, low, close)
        df['ta_pattern_cdlrickshawman'] = ta.CDLRICKSHAWMAN(
            open, high, low, close)
        df['ta_pattern_cdlrisefall3methods'] = ta.CDLRISEFALL3METHODS(
            open, high, low, close)
        df['ta_pattern_cdlseparatinglines'] = ta.CDLSEPARATINGLINES(
            open, high, low, close)
        df['ta_pattern_cdlshootingstar'] = ta.CDLSHOOTINGSTAR(
            open, high, low, close)
        df['ta_pattern_cdlshortline'] = ta.CDLSHORTLINE(open, high, low, close)
        df['ta_pattern_cdlspinningtop'] = ta.CDLSPINNINGTOP(
            open, high, low, close)
        df['ta_pattern_cdlstalledpattern'] = ta.CDLSTALLEDPATTERN(
            open, high, low, close)
        df['ta_pattern_cdlsticksandwich'] = ta.CDLSTICKSANDWICH(
            open, high, low, close)
        df['ta_pattern_cdltakuri'] = ta.CDLTAKURI(open, high, low, close)
        df['ta_pattern_cdltasukigap'] = ta.CDLTASUKIGAP(open, high, low, close)
        df['ta_pattern_cdlthrusting'] = ta.CDLTHRUSTING(open, high, low, close)
        df['ta_pattern_cdltristar'] = ta.CDLTRISTAR(open, high, low, close)
        df['ta_pattern_cdlunique3river'] = ta.CDLUNIQUE3RIVER(
            open, high, low, close)
        df['ta_pattern_cdlupsidegap2crows'] = ta.CDLUPSIDEGAP2CROWS(
            open, high, low, close)
        df['ta_pattern_cdlxsidegap3methods'] = ta.CDLXSIDEGAP3METHODS(
            open, high, low, close)

    if ta_settings['statistic']:

        df['ta_statistic_beta'] = ta.BETA(high, low, timeperiod=5)
        df['ta_statistic_correl'] = ta.CORREL(high, low, timeperiod=30)
        df['ta_statistic_linearreg'] = ta.LINEARREG(close, timeperiod=14)
        df['ta_statistic_linearreg_angle'] = ta.LINEARREG_ANGLE(close,
                                                                timeperiod=14)
        df['ta_statistic_linearreg_intercept'] = ta.LINEARREG_INTERCEPT(
            close, timeperiod=14)
        df['ta_statistic_linearreg_slope'] = ta.LINEARREG_SLOPE(close,
                                                                timeperiod=14)
        df['ta_statistic_stddev'] = ta.STDDEV(close, timeperiod=5, nbdev=1)
        df['ta_statistic_tsf'] = ta.TSF(close, timeperiod=14)
        df['ta_statistic_var'] = ta.VAR(close, timeperiod=5, nbdev=1)

    if ta_settings['math_transforms']:

        df['ta_math_transforms_atan'] = ta.ATAN(close)
        df['ta_math_transforms_ceil'] = ta.CEIL(close)
        df['ta_math_transforms_cos'] = ta.COS(close)
        df['ta_math_transforms_floor'] = ta.FLOOR(close)
        df['ta_math_transforms_ln'] = ta.LN(close)
        df['ta_math_transforms_log10'] = ta.LOG10(close)
        df['ta_math_transforms_sin'] = ta.SIN(close)
        df['ta_math_transforms_sqrt'] = ta.SQRT(close)
        df['ta_math_transforms_tan'] = ta.TAN(close)

    if ta_settings['math_operators']:

        df['ta_math_operators_add'] = ta.ADD(high, low)
        df['ta_math_operators_div'] = ta.DIV(high, low)
        df['ta_math_operators_min'], df['ta_math_operators_max'] = ta.MINMAX(
            close, timeperiod=30)
        df['ta_math_operators_minidx'], df[
            'ta_math_operators_maxidx'] = ta.MINMAXINDEX(close, timeperiod=30)
        df['ta_math_operators_mult'] = ta.MULT(high, low)
        df['ta_math_operators_sub'] = ta.SUB(high, low)
        df['ta_math_operators_sum'] = ta.SUM(close, timeperiod=30)

    return df
Example #12
0
def MAVP(close, periods):
    "MAVP - Moving average with variable period"
    real = talib.MAVP(close, minperiod=2, maxperiod=30, matype=0)
    return [real]
Example #13
0
 def MAVP(self, name, **parameters):
     data = self.__data[name]
     return talib.MAVP(data, **parameters)
Example #14
0
cols = list(stock)[0:13]

#Preprocess data
stock = stock[cols].astype(str)
for i in cols:
    for j in range(0, len(stock)):
        stock[i][j] = stock[i][j].replace(",", "")

stock = stock.astype(float)

periods = np.double(np.array(list(range(0, len(stock['Close'])))))

HT = talib.HT_TRENDMODE(stock['Close'])
rsi = talib.RSI(stock['Close'], timeperiod=5)
wma = talib.WMA(stock['Close'], timeperiod=20)
mavp = talib.MAVP(stock['Close'], periods, minperiod=2, maxperiod=30, matype=0)
upperband, middleband, lowerband = talib.BBANDS(stock['Close'],
                                                timeperiod=10,
                                                nbdevup=2,
                                                nbdevdn=2,
                                                matype=0)
Roc = talib.ROC(stock['Close'], timeperiod=5)
Atr = talib.ATR(stock['High'], stock['Low'], stock['Close'], timeperiod=10)
div = stock.Close - wma
voldiff = stock.Volume.diff()
VolROC = (stock.Volume - stock.Volume.shift(1)) / stock.Volume
opendiff = stock.Open - stock.Open.shift(1)

X = stock.Close.values
size = int(len(X) * 0.66)
train, test = X[0:size], X
Example #15
0
def MAVP(data, **kwargs):
    _check_talib_presence()
    prices = _extract_series(data)
    return talib.MAVP(prices, **kwargs)
Example #16
0
 def MAVP(self, window1=2, window2=30):
     real = talib.MAVP(self.close, self.periods, minperiod=window1, maxperiod=window2, matype=0)
     return real
Example #17
0
data = yf.download("AAPL", start="2020-01-02", end="2021-01-02")
data.reset_index(drop=False,inplace=True)

"""
indicators
"""

#Relative Strength Index
rsi = ta.RSI(data.Close, timeperiod=14) #skip 14 days to have real values
print("Relative Strength Index : \n")
print(rsi)
print("\n")

#Moving Average
periods = data.Date
mvag = ta.MAVP(data.Close, periods, minperiod=2, maxperiod=30, matype=0)
print("Moving Average : \n")
print(mvag)
print("\n")

#Moving Average Convergence Divergence
mvacd = ta.MACD(data.Close, 12, 26, 9)
print("Moving Average Convergence Divergence : \n")
print(mvacd)
print("\n")

#On Balance Volume
obv = ta.OBV(data.Close, data.Volume)
print("On Balance Volume : \n")
print(obv)
Example #18
0
 def MAVP_factor(self, df, periods, minperiod=30, maxperiod=30, matype=0):
     return talib.MAVP(df.loc[:, self.map_dict['default']].values,
                       periods, minperiod,
                       maxperiod, matype)
Example #19
0
def MAVP(raw_df, minperiod=2, maxperiod=30, matype=0):
    # extract necessary data from raw dataframe (close)
    return ta.MAVP(raw_df.Close.values, raw_df.Open.values, minperiod,
                   maxperiod, matype)
Example #20
0
def mavp(real, periods, minperiod=2, maxperiod=30, matype=0):
    values = ta.MAVP(real, periods, minperiod, maxperiod, matype)
    return {"mavp":values}
Example #21
0
    def calculate(self, para):

        self.t = self.inputdata[:, 0]
        self.op = self.inputdata[:, 1]
        self.high = self.inputdata[:, 2]
        self.low = self.inputdata[:, 3]
        self.close = self.inputdata[:, 4]
        #adjusted close
        self.close1 = self.inputdata[:, 5]
        self.volume = self.inputdata[:, 6]
        #Overlap study

        #Overlap Studies
        #Overlap Studies
        if para is 'BBANDS':  #Bollinger Bands
            upperband, middleband, lowerband = ta.BBANDS(self.close,
                                                         timeperiod=self.tp,
                                                         nbdevup=2,
                                                         nbdevdn=2,
                                                         matype=0)
            self.output = [upperband, middleband, lowerband]

        elif para is 'DEMA':  #Double Exponential Moving Average
            self.output = ta.DEMA(self.close, timeperiod=self.tp)

        elif para is 'EMA':  #Exponential Moving Average
            self.output = ta.EMA(self.close, timeperiod=self.tp)

        elif para is 'HT_TRENDLINE':  #Hilbert Transform - Instantaneous Trendline
            self.output = ta.HT_TRENDLINE(self.close)

        elif para is 'KAMA':  #Kaufman Adaptive Moving Average
            self.output = ta.KAMA(self.close, timeperiod=self.tp)

        elif para is 'MA':  #Moving average
            self.output = ta.MA(self.close, timeperiod=self.tp, matype=0)

        elif para is 'MAMA':  #MESA Adaptive Moving Average
            mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0)

        elif para is 'MAVP':  #Moving average with variable period
            self.output = ta.MAVP(self.close,
                                  periods=10,
                                  minperiod=self.tp,
                                  maxperiod=self.tp1,
                                  matype=0)

        elif para is 'MIDPOINT':  #MidPoint over period
            self.output = ta.MIDPOINT(self.close, timeperiod=self.tp)

        elif para is 'MIDPRICE':  #Midpoint Price over period
            self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp)

        elif para is 'SAR':  #Parabolic SAR
            self.output = ta.SAR(self.high,
                                 self.low,
                                 acceleration=0,
                                 maximum=0)

        elif para is 'SAREXT':  #Parabolic SAR - Extended
            self.output = ta.SAREXT(self.high,
                                    self.low,
                                    startvalue=0,
                                    offsetonreverse=0,
                                    accelerationinitlong=0,
                                    accelerationlong=0,
                                    accelerationmaxlong=0,
                                    accelerationinitshort=0,
                                    accelerationshort=0,
                                    accelerationmaxshort=0)

        elif para is 'SMA':  #Simple Moving Average
            self.output = ta.SMA(self.close, timeperiod=self.tp)

        elif para is 'T3':  #Triple Exponential Moving Average (T3)
            self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0)

        elif para is 'TEMA':  #Triple Exponential Moving Average
            self.output = ta.TEMA(self.close, timeperiod=self.tp)

        elif para is 'TRIMA':  #Triangular Moving Average
            self.output = ta.TRIMA(self.close, timeperiod=self.tp)

        elif para is 'WMA':  #Weighted Moving Average
            self.output = ta.WMA(self.close, timeperiod=self.tp)

        #Momentum Indicators
        elif para is 'ADX':  #Average Directional Movement Index
            self.output = ta.ADX(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'ADXR':  #Average Directional Movement Index Rating
            self.output = ta.ADXR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'APO':  #Absolute Price Oscillator
            self.output = ta.APO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'AROON':  #Aroon
            aroondown, aroonup = ta.AROON(self.high,
                                          self.low,
                                          timeperiod=self.tp)
            self.output = [aroondown, aroonup]

        elif para is 'AROONOSC':  #Aroon Oscillator
            self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp)

        elif para is 'BOP':  #Balance Of Power
            self.output = ta.BOP(self.op, self.high, self.low, self.close)

        elif para is 'CCI':  #Commodity Channel Index
            self.output = ta.CCI(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'CMO':  #Chande Momentum Oscillator
            self.output = ta.CMO(self.close, timeperiod=self.tp)

        elif para is 'DX':  #Directional Movement Index
            self.output = ta.DX(self.high,
                                self.low,
                                self.close,
                                timeperiod=self.tp)

        elif para is 'MACD':  #Moving Average Convergence/Divergence
            macd, macdsignal, macdhist = ta.MACD(self.close,
                                                 fastperiod=12,
                                                 slowperiod=26,
                                                 signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDEXT':  #MACD with controllable MA type
            macd, macdsignal, macdhist = ta.MACDEXT(self.close,
                                                    fastperiod=12,
                                                    fastmatype=0,
                                                    slowperiod=26,
                                                    slowmatype=0,
                                                    signalperiod=9,
                                                    signalmatype=0)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDFIX':  #Moving Average Convergence/Divergence Fix 12/26
            macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MFI':  #Money Flow Index
            self.output = ta.MFI(self.high,
                                 self.low,
                                 self.close,
                                 self.volume,
                                 timeperiod=self.tp)

        elif para is 'MINUS_DI':  #Minus Directional Indicator
            self.output = ta.MINUS_DI(self.high,
                                      self.low,
                                      self.close,
                                      timeperiod=self.tp)

        elif para is 'MINUS_DM':  #Minus Directional Movement
            self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'MOM':  #Momentum
            self.output = ta.MOM(self.close, timeperiod=10)

        elif para is 'PLUS_DI':  #Plus Directional Indicator
            self.output = ta.PLUS_DI(self.high,
                                     self.low,
                                     self.close,
                                     timeperiod=self.tp)

        elif para is 'PLUS_DM':  #Plus Directional Movement
            self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'PPO':  #Percentage Price Oscillator
            self.output = ta.PPO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'ROC':  #Rate of change : ((price/prevPrice)-1)*100
            self.output = ta.ROC(self.close, timeperiod=10)

        elif para is 'ROCP':  #Rate of change Percentage: (price-prevPrice)/prevPrice
            self.output = ta.ROCP(self.close, timeperiod=10)

        elif para is 'ROCR':  #Rate of change ratio: (price/prevPrice)
            self.output = ta.ROCR(self.close, timeperiod=10)

        elif para is 'ROCR100':  #Rate of change ratio 100 scale: (price/prevPrice)*100
            self.output = ta.ROCR100(self.close, timeperiod=10)

        elif para is 'RSI':  #Relative Strength Index
            self.output = ta.RSI(self.close, timeperiod=self.tp)

        elif para is 'STOCH':  #Stochastic
            slowk, slowd = ta.STOCH(self.high,
                                    self.low,
                                    self.close,
                                    fastk_period=5,
                                    slowk_period=3,
                                    slowk_matype=0,
                                    slowd_period=3,
                                    slowd_matype=0)
            self.output = [slowk, slowd]

        elif para is 'STOCHF':  #Stochastic Fast
            fastk, fastd = ta.STOCHF(self.high,
                                     self.low,
                                     self.close,
                                     fastk_period=5,
                                     fastd_period=3,
                                     fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'STOCHRSI':  #Stochastic Relative Strength Index
            fastk, fastd = ta.STOCHRSI(self.close,
                                       timeperiod=self.tp,
                                       fastk_period=5,
                                       fastd_period=3,
                                       fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'TRIX':  #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
            self.output = ta.TRIX(self.close, timeperiod=self.tp)

        elif para is 'ULTOSC':  #Ultimate Oscillator
            self.output = ta.ULTOSC(self.high,
                                    self.low,
                                    self.close,
                                    timeperiod1=self.tp,
                                    timeperiod2=self.tp1,
                                    timeperiod3=self.tp2)

        elif para is 'WILLR':  #Williams' %R
            self.output = ta.WILLR(self.high,
                                   self.low,
                                   self.close,
                                   timeperiod=self.tp)

        # Volume Indicators    : #
        elif para is 'AD':  #Chaikin A/D Line
            self.output = ta.AD(self.high, self.low, self.close, self.volume)

        elif para is 'ADOSC':  #Chaikin A/D Oscillator
            self.output = ta.ADOSC(self.high,
                                   self.low,
                                   self.close,
                                   self.volume,
                                   fastperiod=3,
                                   slowperiod=10)

        elif para is 'OBV':  #On Balance Volume
            self.output = ta.OBV(self.close, self.volume)

    # Volatility Indicators: #
        elif para is 'ATR':  #Average True Range
            self.output = ta.ATR(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'NATR':  #Normalized Average True Range
            self.output = ta.NATR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'TRANGE':  #True Range
            self.output = ta.TRANGE(self.high, self.low, self.close)

        #Price Transform      : #
        elif para is 'AVGPRICE':  #Average Price
            self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close)

        elif para is 'MEDPRICE':  #Median Price
            self.output = ta.MEDPRICE(self.high, self.low)

        elif para is 'TYPPRICE':  #Typical Price
            self.output = ta.TYPPRICE(self.high, self.low, self.close)

        elif para is 'WCLPRICE':  #Weighted Close Price
            self.output = ta.WCLPRICE(self.high, self.low, self.close)

        #Cycle Indicators     : #
        elif para is 'HT_DCPERIOD':  #Hilbert Transform - Dominant Cycle Period
            self.output = ta.HT_DCPERIOD(self.close)

        elif para is 'HT_DCPHASE':  #Hilbert Transform - Dominant Cycle Phase
            self.output = ta.HT_DCPHASE(self.close)

        elif para is 'HT_PHASOR':  #Hilbert Transform - Phasor Components
            inphase, quadrature = ta.HT_PHASOR(self.close)
            self.output = [inphase, quadrature]

        elif para is 'HT_SINE':  #Hilbert Transform - SineWave #2
            sine, leadsine = ta.HT_SINE(self.close)
            self.output = [sine, leadsine]

        elif para is 'HT_TRENDMODE':  #Hilbert Transform - Trend vs Cycle Mode
            self.integer = ta.HT_TRENDMODE(self.close)

        #Pattern Recognition  : #
        elif para is 'CDL2CROWS':  #Two Crows
            self.integer = ta.CDL2CROWS(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDL3BLACKCROWS':  #Three Black Crows
            self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3INSIDE':  #Three Inside Up/Down
            self.integer = ta.CDL3INSIDE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDL3LINESTRIKE':  #Three-Line Strike
            self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3OUTSIDE':  #Three Outside Up/Down
            self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDL3STARSINSOUTH':  #Three Stars In The South
            self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDL3WHITESOLDIERS':  #Three Advancing White Soldiers
            self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLABANDONEDBABY':  #Abandoned Baby
            self.integer = ta.CDLABANDONEDBABY(self.op,
                                               self.high,
                                               self.low,
                                               self.close,
                                               penetration=0)

        elif para is 'CDLBELTHOLD':  #Belt-hold
            self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLBREAKAWAY':  #Breakaway
            self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLCLOSINGMARUBOZU':  #Closing Marubozu
            self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLCONCEALBABYSWALL':  #Concealing Baby Swallow
            self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLCOUNTERATTACK':  #Counterattack
            self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLDARKCLOUDCOVER':  #Dark Cloud Cover
            self.integer = ta.CDLDARKCLOUDCOVER(self.op,
                                                self.high,
                                                self.low,
                                                self.close,
                                                penetration=0)

        elif para is 'CDLDOJI':  #Doji
            self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close)

        elif para is 'CDLDOJISTAR':  #Doji Star
            self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLDRAGONFLYDOJI':  #Dragonfly Doji
            self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLENGULFING':  #Engulfing Pattern
            self.integer = ta.CDLENGULFING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLEVENINGDOJISTAR':  #Evening Doji Star
            self.integer = ta.CDLEVENINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLEVENINGSTAR':  #Evening Star
            self.integer = ta.CDLEVENINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLGAPSIDESIDEWHITE':  #Up/Down-gap side-by-side white lines
            self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLGRAVESTONEDOJI':  #Gravestone Doji
            self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLHAMMER':  #Hammer
            self.integer = ta.CDLHAMMER(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHANGINGMAN':  #Hanging Man
            self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHARAMI':  #Harami Pattern
            self.integer = ta.CDLHARAMI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHARAMICROSS':  #Harami Cross Pattern
            self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLHIGHWAVE':  #High-Wave Candle
            self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLHIKKAKE':  #Hikkake Pattern
            self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLHIKKAKEMOD':  #Modified Hikkake Pattern
            self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHOMINGPIGEON':  #Homing Pigeon
            self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLIDENTICAL3CROWS':  #Identical Three Crows
            self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLINNECK':  #In-Neck Pattern
            self.integer = ta.CDLINNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLINVERTEDHAMMER':  #Inverted Hammer
            self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLKICKING':  #Kicking
            self.integer = ta.CDLKICKING(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLKICKINGBYLENGTH':  #Kicking - bull/bear determined by the longer marubozu
            self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLLADDERBOTTOM':  #Ladder Bottom
            self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLLONGLEGGEDDOJI':  #Long Legged Doji
            self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLLONGLINE':  #Long Line Candle
            self.integer = ta.CDLLONGLINE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMARUBOZU':  #Marubozu
            self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMATCHINGLOW':  #Matching Low
            self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLMATHOLD':  #Mat Hold
            self.integer = ta.CDLMATHOLD(self.op,
                                         self.high,
                                         self.low,
                                         self.close,
                                         penetration=0)

        elif para is 'CDLMORNINGDOJISTAR':  #Morning Doji Star
            self.integer = ta.CDLMORNINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLMORNINGSTAR':  #Morning Star
            self.integer = ta.CDLMORNINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLONNECK':  #On-Neck Pattern
            self.integer = ta.CDLONNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLPIERCING':  #Piercing Pattern
            self.integer = ta.CDLPIERCING(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLRICKSHAWMAN':  #Rickshaw Man
            self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLRISEFALL3METHODS':  #Rising/Falling Three Methods
            self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLSEPARATINGLINES':  #Separating Lines
            self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLSHOOTINGSTAR':  #Shooting Star
            self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLSHORTLINE':  #Short Line Candle
            self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLSPINNINGTOP':  #Spinning Top
            self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLSTALLEDPATTERN':  #Stalled Pattern
            self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLSTICKSANDWICH':  #Stick Sandwich
            self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLTAKURI':  #Takuri (Dragonfly Doji with very long lower shadow)
            self.integer = ta.CDLTAKURI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLTASUKIGAP':  #Tasuki Gap
            self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTHRUSTING':  #Thrusting Pattern
            self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTRISTAR':  #Tristar Pattern
            self.integer = ta.CDLTRISTAR(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLUNIQUE3RIVER':  #Unique 3 River
            self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLUPSIDEGAP2CROWS':  #Upside Gap Two Crows
            self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLXSIDEGAP3METHODS':  #Upside/Downside Gap Three Methods
            self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low,
                                                  self.close)

        #Statistic Functions  : #
        elif para is 'BETA':  #Beta
            self.output = ta.BETA(self.high, self.low, timeperiod=5)

        elif para is 'CORREL':  #Pearson's Correlation Coefficient (r)
            self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp)

        elif para is 'LINEARREG':  #Linear Regression
            self.output = ta.LINEARREG(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_ANGLE':  #Linear Regression Angle
            self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_INTERCEPT':  #Linear Regression Intercept
            self.output = ta.LINEARREG_INTERCEPT(self.close,
                                                 timeperiod=self.tp)

        elif para is 'LINEARREG_SLOPE':  #Linear Regression Slope
            self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp)

        elif para is 'STDDEV':  #Standard Deviation
            self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1)

        elif para is 'TSF':  #Time Series Forecast
            self.output = ta.TSF(self.close, timeperiod=self.tp)

        elif para is 'VAR':  #Variance
            self.output = ta.VAR(self.close, timeperiod=5, nbdev=1)

        else:
            print('You issued command:' + para)
Example #22
0
    df['Adj Close'].shift(1)),
                                                               timeperiod=n,
                                                               nbdevup=2,
                                                               nbdevdn=2,
                                                               matype=0)
df['DEMA'] = ta.DEMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['EMA'] = ta.EMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['HT_TRENDLINE'] = ta.HT_TRENDLINE(np.array(df['Adj Close'].shift(1)))
df['KAMA'] = ta.KAMA(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['MA'] = ta.MA(np.array(df['Adj Close'].shift(1)), timeperiod=n, matype=0)
df['mama'], df['fama'] = ta.MAMA(np.array(df['Adj Close'].shift(1)),
                                 fastlimit=0,
                                 slowlimit=0)
df['MAVP'] = ta.MAVP(np.array(df['Adj Close'].shift(1)),
                     periods,
                     minperiod=2,
                     maxperiod=30,
                     matype=0)
df['MIDPOINT'] = ta.MIDPOINT(np.array(df['Adj Close'].shift(1)), timeperiod=n)
df['MIDPRICE'] = ta.MIDPRICE(np.array(df['High'].shift(1)),
                             np.array(df['Low'].shift(1)),
                             timeperiod=n)
df['SAR'] = ta.SAR(np.array(df['High'].shift(1)),
                   np.array(df['Low'].shift(1)),
                   acceleration=0,
                   maximum=0)

df['SAREXT'] = ta.SAREXT(np.array(df['High'].shift(1)),
                         np.array(df['Low'].shift(1)),
                         startvalue=0,
                         offsetonreverse=0,