def __init__(self, *args, **kwargs):
     kwargs['Hamiltonian_SCC'] = 'Yes' # SCC = self-consistency charges
     kwargs['Hamiltonian_ShellResolvedSCC'] = 'No' # Use l-dependent Hubbard values ?
     kwargs['Hamiltonian_OrbitalResolvedSCC'] = 'No'
     kwargs['Hamiltonian_SCCTolerance'] = '1e-5' # SCC convergence criterion
     kwargs['Hamiltonian_MaxSCCIterations'] = 250
     kwargs['maximum_angular_momenta'] = {'Xx': MAM1, 'Yy': MAM2}
     kwargs['Hamiltonian_Charge'] = '0.000000'
     kwargs['Hamiltonian_ReadInitialCharges'] = 'No' # DFTB-equivalent of restarting from saved electron density
     kwargs['Hamiltonian_Filling'] = 'Fermi {'
     kwargs['Hamiltonian_Filling_empty'] = 'Temperature [Kelvin] = 300'
     kwargs['Hamiltonian_PolynomialRepulsive'] = 'SetForAll {Yes}' # Use polynomial or spline repulsive ?
     kwargs['Hamiltonian_Eigensolver'] = 'RelativelyRobust {}'
     DftbPlusCalculator.__init__(self, *args, **kwargs)
Example #2
0
def singlepoint(t):
    ''' This function will be used in the iter007 step, which restarts
    from the runXXX/godb.db databases from the iter006 step. 
    Since the repulsive interactions have been reparametrized in
    between, the structures in the database need to be re-evaluated.
    '''
    calc = DftbPlusCalculator(t, kpts=(1, 1, 1), use_spline=True,
                              maximum_angular_momenta={'Si': 1})
    t.set_calculator(calc)
    E = t.get_potential_energy()
    F = t.get_forces()
    S = None
    finalize(t, energy=E, forces=F, stress=S)
    return t
Example #3
0
def singlepoint(t, kptdensity=3.5):
    if get_raw_score(t) < -1e5:
        return t
    try:
        calc = DftbPlusCalculator(t, kpts=kptdensity, use_spline=True,
                              maximum_angular_momenta={'Pd': 2, 'H': 0, 'O': 1})
        t.set_calculator(calc)
        E = t.get_potential_energy()
        F = t.get_forces()
        S = t.get_stress()
        finalize(t, energy=E, forces=F, stress=S)
        penalize(t)
    except (IOError, TypeError, RuntimeError, UnboundLocalError) as err:
        print(err)
        print('Warning: problems with singlepoint recalculation')
        finalize(t, energy=1e9, forces=None, stress=None)
    return t
Example #4
0
def relax_one(t):
    ''' This method defines how to locally minimize a given
    atoms object 't'.
    '''
    # The provided structure will often contain atoms separated
    # by relatively short distances. Pushing these atoms a bit
    # apart using a soft potential will reduce the number of
    # subsequent ionic steps and will help avoid DFTB convergence
    # problems.
    pos = t.get_positions()
    numbers = list(set(t.get_atomic_numbers()))
    blmin = closest_distances_generator(numbers, 0.5)
    t = push_apart(t, blmin, variable_cell=False)

    print('Starting relaxation', flush=True)
    clock = time()
    t.wrap()

    # Define the DFTB+ calculator:
    calc = DftbPlusCalculator(t, kpts=(1, 1, 1), use_spline=True,
                              maximum_angular_momenta={'Si': 1})

    # Start the actual relaxation using the 
    # tango.relax_utils.relax_precon method.
    # This wraps around the preconditioned
    # optimizers in ASE and also takes care of
    # setting the raw score etc.:
    try:
        t = relax_precon(t, calc, fmax=1e-2, variable_cell=False,
                         logfile=None, trajfile=None)
    except IOError:
        # the DFTB+ ASE calculator throws an IOError
        # in case it couldn't find the 'results.tag'
        # output file, which may sporadically happen
        # due to SCC converge issues when e.g. a Si7
        # cluster is breaking into fragments. We simply
        # handle this by aborting the relaxation and
        # assigning a very high energy to the structure:
        finalize(t, energy=1e9, forces=None, stress=None)

    print('Relaxing took %.3f seconds.' % (time() - clock), flush=True)
    return t
Example #5
0
def relax_one(t, kptdensity=3.5):
    cellbounds = CellBounds(
        bounds={
            'phi': [0.1 * 180., 0.9 * 180.],
            'chi': [0.1 * 180., 0.9 * 180.],
            'psi': [0.1 * 180., 0.9 * 180.],
            'a': [1.5, 20],
            'b': [1.5, 20],
            'c': [1.5, 20]
        })

    if not cellbounds.is_within_bounds(t.get_cell()):
        print('Candidate outside cellbounds -- skipping')
        finalize(t, energy=1e9, forces=None, stress=None)
        return t

    pos = t.get_positions()
    numbers = list(set(t.get_atomic_numbers()))
    blmin = closest_distances_generator(numbers, 0.5)
    t = push_apart(t, blmin, variable_cell=True)

    print('Starting relaxation', flush=True)
    clock = time()
    t.wrap()
    calc = DftbPlusCalculator(t,
                              kpts=0.66 * kptdensity,
                              use_spline=True,
                              read_chg=True,
                              maximum_angular_momenta={'C': 1})

    try:
        t = relax_precon(t,
                         calc,
                         fmax=2e-1,
                         smax=1e-2,
                         variable_cell=True,
                         optimizer='LBFGS',
                         a_min=1e-4,
                         cellbounds=cellbounds,
                         logfile='opt_first.log',
                         trajfile='opt_first.traj')
    except (IOError, TypeError, RuntimeError, UnboundLocalError) as err:
        # SCC or geometry optimization convergence problem
        print(err)

    del t.constraints
    t.wrap()
    calc = DftbPlusCalculator(t,
                              kpts=kptdensity,
                              use_spline=True,
                              read_chg=True,
                              maximum_angular_momenta={'C': 1})

    try:
        t = relax_precon(t,
                         calc,
                         fmax=1e-1,
                         smax=5e-3,
                         variable_cell=True,
                         optimizer='LBFGS',
                         a_min=1e-4,
                         cellbounds=cellbounds,
                         logfile='opt.log',
                         trajfile='opt.traj')
    except (IOError, TypeError, RuntimeError, UnboundLocalError) as err:
        # SCC or geometry optimization convergence problem
        print(err)
        try:
            t = read('opt.traj@-1')
            energy = t.get_potential_energy()
            forces = t.get_forces()
            stress = t.get_stress()
        except (FileNotFoundError, UnknownFileTypeError) as err:
            print(err)
            energy, forces, stress = (1e9, None, None)
        finalize(t, energy=energy, forces=forces, stress=stress)

    print('Relaxing took %.3f seconds.' % (time() - clock), flush=True)
    os.system('mv opt_first.traj prev_first.traj')
    os.system('mv opt_first.log prev_first.log')
    os.system('mv opt.log prev.log')
    os.system('mv opt.traj prev.traj')
    penalize(t)
    return t
Example #6
0
def relax_one(t, kptdensity=3.5):
    cellbounds = CellBounds(bounds={'phi': [0.1 * 180., 0.9 * 180.],
                                    'chi': [0.1 * 180., 0.9 * 180.],
                                    'psi': [0.1 * 180., 0.9 * 180.],
                                    'a': [1.5, 20], 'b': [1.5, 20],
                                    'c':[1.5, 20]})

    if not cellbounds.is_within_bounds(t.get_cell()):
        print('Candidate outside cellbounds -- skipping')
        finalize(t, energy=1e9, forces=None, stress=None)
        return t

    tags = t.get_tags()
    pos = t.get_positions()
    pairs = []
    for tag in list(set(tags)):
        indices = list(np.where(tags == tag)[0])
        if len(indices) == 2:
            pairs.append(indices)
    c = FixBondLengths(pairs)
    t.set_constraint(c)
    blmin = {(1, 1): 1.8, (1, 8): 0.9, (1, 46): 1.8, (8, 8): 2.0,
             (8, 46): 1.5, (46, 46): 1.5}
    t = push_apart(t, blmin, variable_cell=True)
    del t.constraints
    oh_bondlength = 0.97907
    for (o_atom, h_atom) in pairs:
        vec = t.get_distance(o_atom, h_atom, mic=True, vector=True)
        pos[h_atom] = pos[o_atom] + vec * oh_bondlength / np.linalg.norm(vec)
    t.set_positions(pos)

    print('Starting relaxation', flush=True)
    clock = time()
    t.wrap()
    calc = DftbPlusCalculator(t, kpts=0.66*kptdensity,
                              use_spline=True, read_chg=True,
                              maximum_angular_momenta={'Pd': 2, 'H': 0, 'O': 1})

    try:
        t = relax_precon(t, calc, fmax=2e-1, smax=1e-2, variable_cell=True,
                         optimizer='LBFGS', a_min=1e-4, cellbounds=cellbounds,
                         fix_bond_lengths_pairs=pairs, logfile='opt_first.log',
                         trajfile='opt_first.traj')
    except (IOError, TypeError, RuntimeError, UnboundLocalError) as err:
        # SCC or geometry optimization convergence problem
        print(err)
        if isinstance(t, Filter):
            t = t.atoms

    del t.constraints
    t.wrap()

    calc = DftbPlusCalculator(t, kpts=kptdensity,
                              use_spline=True, read_chg=True,
                              maximum_angular_momenta={'Pd': 2, 'H': 0, 'O': 1})

    try:
        t = relax_precon(t, calc, fmax=1e-1, smax=5e-3, variable_cell=True,
                         optimizer='LBFGS', a_min=1e-4, cellbounds=cellbounds,
                         fix_bond_lengths_pairs=pairs, logfile='opt.log',
                         trajfile='opt.traj')
    except (IOError, TypeError, RuntimeError, UnboundLocalError) as err:
        # SCC or geometry optimization convergence problem
        print(err)
        try:
            t = read('opt.traj@-1')
            energy = t.get_potential_energy()
            forces = t.get_forces()
            stress = t.get_stress()
        except (FileNotFoundError, UnknownFileTypeError) as err:
            print(err)
            energy, forces, stress = (1e9, None, None)

        if isinstance(t, Filter):
            t = t.atoms
        finalize(t, energy=energy, forces=forces, stress=stress)

    print('Relaxing took %.3f seconds.' % (time() - clock), flush=True)
    os.system('mv opt_first.traj prev_first.traj')
    os.system('mv opt_first.log prev_first.log')
    os.system('mv opt.log prev.log')
    os.system('mv opt.traj prev.traj')
    penalize(t)
    return t
Example #7
0
 def __init__(self, *args, **kwargs):
     kwargs['Hamiltonian_SCC'] = 'No'
     kwargs['Hamiltonian_ShellResolvedSCC'] = 'No'
     kwargs['Hamiltonian_OrbitalResolvedSCC'] = 'No'
     kwargs['maximum_angular_momenta'] = {'Si': 1}
     DftbPlusCalculator.__init__(self, *args, **kwargs)