def test_valid(self): with self.assertRaises(GitError): # check non existant repo train("wrong/repo") classify( "wrongrepo", "wrong/repo", "wrongtoken") # check non valid token classify( "wrong/repo", "wrong/repo", "wrongtoken")
def main(): ## Sets #train_set_path='../Sets/demoset.h5' #validation_set_path='../Sets/demoset.h5' #test_set_path='../Sets/demoset.h5' train_set_path = '../Sets/trainset.h5' validation_set_path = '../Sets/validationset1.h5' test_set_path = '../Sets/testset.h5' ## Database location DataBasePath = '../Database/lines' transferFLAG = False testFLAG = False batch_size = 16 num_epochs = 250 learning_rate = 0.0003 num_epochs_before_validation = 10 restore_checkpoint_at_epoch = 0 import datetime now = now = datetime.datetime.utcnow().strftime("%Y%m%d%H%M%S") ## Log file if testFLAG: indicator = sys.argv[0].split('/')[-1].split('-')[0] files_path = './train-{}/eval-{}/'.format(indicator, now) log_path = './train-{}/eval-{}/log/'.format(indicator, now) log_file_path = './train-{}/eval-{}/log/log.txt'.format(indicator, now) models_path = './train-{}/models/'.format(indicator) TensorBoard_dir = './train-{}/eval-{}/TensorBoard_files/'.format( indicator, now) tf.gfile.MakeDirs(files_path) tf.gfile.MakeDirs(log_path) tf.gfile.MakeDirs(TensorBoard_dir) copyfile(sys.argv[0], files_path + '{}-'.format(now) + sys.argv[0]) log_file_indicator = initialize_log(log_file_path, mode='w') elif restore_checkpoint_at_epoch == 0 or transferFLAG: files_path = './train-{}/'.format(now) log_path = './train-{}/log'.format(now) log_file_path = './train-{}/log/log.txt'.format(now) models_path = './train-{}/models/'.format(now) TensorBoard_dir = './train-{}/TensorBoard_files/'.format(now) tf.gfile.MakeDirs(files_path) tf.gfile.MakeDirs(log_path) tf.gfile.MakeDirs(models_path) tf.gfile.MakeDirs(TensorBoard_dir) copyfile(sys.argv[0], files_path + '{}-'.format(now) + sys.argv[0]) copyfile(sys.argv[0], './{}-'.format(now) + sys.argv[0]) log_file_indicator = initialize_log(log_file_path, mode='w') else: indicator = sys.argv[0].split('/')[-1].split('-')[0] log_path = './train-{}/log'.format(indicator) log_file_path = './train-{}/log/log.txt'.format(indicator) models_path = './train-{}/models/'.format(indicator) TensorBoard_dir = './train-{}/TensorBoard_files/'.format(indicator) log_file_indicator = initialize_log(log_file_path, mode='a') log_file_indicator.write( ('#' * 100 + '\n') * 5 + '\n\nRecovering after break or pause in epoch ' + str(restore_checkpoint_at_epoch) + '\n\n' + ('#' * 100 + '\n') * 5) if transferFLAG: model_for_transfer_path = './model_for_transfer' num_steps = ceil(num_epochs / num_epochs_before_validation) validSet, valid_imageHeight, valid_imageWidth, valid_labels = load_dataset( validation_set_path, DataBasePath, log_file_indicator) if not testFLAG: trainSet, train_imageHeight, train_imageWidth, train_labels = load_dataset( train_set_path, DataBasePath, log_file_indicator) imageHeight, labels = check_valid_and_test_sets( train_imageHeight, valid_imageHeight, train_imageHeight, train_labels, valid_labels, train_labels, log_file_indicator) train_writer = tf.summary.FileWriter(TensorBoard_dir + 'train_task') valid_vs_writer = tf.summary.FileWriter(TensorBoard_dir + 'valid_task_validset') valid_ts_writer = tf.summary.FileWriter(TensorBoard_dir + 'valid_task_trainset') else: testSet, test_imageHeight, test_imageWidth, test_labels = load_dataset( test_set_path, DataBasePath, log_file_indicator) imageHeight, labels = check_valid_and_test_sets( test_imageHeight, valid_imageHeight, test_imageHeight, test_labels, valid_labels, test_labels, log_file_indicator) test_writer = tf.summary.FileWriter(TensorBoard_dir + 'test_validset') valid_writer = tf.summary.FileWriter(TensorBoard_dir + 'valid_testset') log_file_indicator.flush() # The number of classes is the amount of labels plus 1 for blanck num_classes = len(labels) + 1 train_start = time.time() network_train = Network() if transferFLAG: epoch = restore_checkpoint_at_epoch transfer(epoch, network_train, imageHeight, train_imageWidth, num_classes, log_file_indicator, model_for_transfer_path, models_path, train_writer) if not testFLAG: for step in range( ceil(restore_checkpoint_at_epoch / num_epochs_before_validation), num_steps): train(step, network_train, num_epochs_before_validation, batch_size, learning_rate, trainSet, imageHeight, train_imageWidth, num_classes, log_file_indicator, models_path, train_writer, transferFLAG) epoch = (step + 1) * num_epochs_before_validation - 1 validation(epoch, network_train, batch_size, 'validation', validSet, imageHeight, valid_imageWidth, labels, num_classes, log_file_indicator, models_path, valid_vs_writer) validation(epoch, network_train, batch_size, 'train', trainSet, imageHeight, train_imageWidth, labels, num_classes, log_file_indicator, models_path, valid_ts_writer) train_end = time.time() train_duration = train_end - train_start print('Training completed in: ' + seconds_to_days_hours_min_sec(train_duration)) log_file_indicator.write( '\nTraining completed in: ' + seconds_to_days_hours_min_sec(train_duration, day_flag=True) + '\n') else: epoch = restore_checkpoint_at_epoch text = '\nEvaluating model at epoch {}...\n'.format(epoch) print(text) log_file_indicator.write(text) validation(epoch, network_train, batch_size, 'validation', validSet, imageHeight, valid_imageWidth, labels, num_classes, log_file_indicator, models_path, valid_writer) validation(epoch, network_train, batch_size, 'test', testSet, imageHeight, test_imageWidth, labels, num_classes, log_file_indicator, models_path, test_writer) test_end = time.time() test_duration = test_end - train_start print('Evaluation completed in: ' + seconds_to_days_hours_min_sec(test_duration)) log_file_indicator.write( '\nEvaluation completed in: ' + seconds_to_days_hours_min_sec(test_duration, day_flag=True) + '\n') total_parameters = 0 for variable in tf.trainable_variables(): # shape is an array of tf.Dimension shape = variable.get_shape() print(shape) print(len(shape)) variable_parameters = 1 for dim in shape: print(dim) variable_parameters *= dim.value print(variable_parameters) total_parameters += variable_parameters print(total_parameters) if not testFLAG: train_writer.close() valid_ts_writer.close() valid_vs_writer.close() else: test_writer.close() valid_writer.close() log_file_indicator.flush() log_file_indicator.close()
def main(): ## Sets train_set_path = '../Sets/cv1/demo.h5' validation_set_path = '../Sets/cv1/demo.h5' test_set_path = '../Sets/cv1/demo.h5' # train_set_path='../Sets/cv1/train.h5' # validation_set_path='../Sets/cv1/valid.h5' # test_set_path='../Sets/cv1/test.h5' ## Database location DataBasePath = '../Database/washingtondb-v1.0/data/line_images_normalized' batch_size = 15 num_epochs = 250 learning_rate = 0.0003 num_epochs_before_validation = 10 restore_checkpoint_at_epoch = 0 num_steps = ceil(num_epochs / num_epochs_before_validation) import datetime from shutil import copyfile now = now = datetime.datetime.utcnow().strftime("%Y%m%d%H%M%S") ## Log file files_path = './train-{}/'.format(now) log_path = './train-{}/log/'.format(now) log_file_path = './train-{}/log/log.txt'.format(now) models_path = './train-{}/models/'.format(now) TensorBoard_dir = './train-{}/TensorBoard_files/'.format(now) if restore_checkpoint_at_epoch == 0: tf.gfile.MakeDirs(files_path) copyfile(sys.argv[0], files_path + '{}-'.format(now) + sys.argv[0]) tf.gfile.MakeDirs(log_path) log_file_indicator = initialize_log(log_file_path, mode='w') if tf.gfile.Exists(TensorBoard_dir): tf.gfile.DeleteRecursively(TensorBoard_dir) tf.gfile.MakeDirs(TensorBoard_dir) if tf.gfile.Exists(models_path): tf.gfile.DeleteRecursively(models_path) tf.gfile.MakeDirs(models_path) else: log_file_indicator = initialize_log(log_file_path, mode='a') log_file_indicator.write( ('#' * 100 + '\n') * 5 + '\n\nRecovering after break or pause in epoch ' + str(restore_checkpoint_at_epoch) + '\n\n' + ('#' * 100 + '\n') * 5) trainSet, train_imageHeight, train_imageWidth, train_labels = load_dataset( train_set_path, DataBasePath, log_file_indicator, database='Washington') validSet, valid_imageHeight, valid_imageWidth, valid_labels = load_dataset( validation_set_path, DataBasePath, log_file_indicator, database='Washington') testSet, test_imageHeight, test_imageWidth, test_labels = load_dataset( test_set_path, DataBasePath, log_file_indicator, database='Washington') log_file_indicator.flush() imageHeight, labels = check_valid_and_test_sets( train_imageHeight, valid_imageHeight, test_imageHeight, train_labels, valid_labels, test_labels, log_file_indicator) # The number of classes is the amount of labels plus 1 for blanck num_classes = len(labels) + 1 train_start = time.time() network_train = Network() train_writer = tf.summary.FileWriter(TensorBoard_dir + 'train_task') valid_vs_writer = tf.summary.FileWriter(TensorBoard_dir + 'valid_task_validset') valid_ts_writer = tf.summary.FileWriter(TensorBoard_dir + 'valid_task_trainset') for step in range( ceil(restore_checkpoint_at_epoch / num_epochs_before_validation), num_steps): train(step, network_train, num_epochs_before_validation, batch_size, learning_rate, trainSet, imageHeight, train_imageWidth, num_classes, log_file_indicator, models_path, train_writer) epoch = (step + 1) * num_epochs_before_validation - 1 validation(epoch, network_train, batch_size, 'validation', validSet, imageHeight, valid_imageWidth, labels, num_classes, log_file_indicator, models_path, valid_vs_writer) validation(epoch, network_train, batch_size, 'train', trainSet, imageHeight, train_imageWidth, labels, num_classes, log_file_indicator, models_path, valid_ts_writer) train_end = time.time() train_duration = train_end - train_start print('Training completed in: ' + seconds_to_days_hours_min_sec(train_duration)) train_writer.close() valid_ts_writer.close() valid_vs_writer.close() log_file_indicator.write( '\nTraining completed in: ' + seconds_to_days_hours_min_sec(train_duration, day_flag=True) + '\n') log_file_indicator.flush() log_file_indicator.close()
for config in config_list: print(f'Starting with {config["modelname"]}') model = create_model(config['modelname']) model = model.to(config['device']) ### PHASE 1 - tune on train/val split the last layers of the model config['datasets_dict'] = {'train': dataset_train, 'val': dataset_val} # only tune the last conv block of the resnet and the new classifier params_to_optimize = [] for m in list(model.children())[-2:]: params_to_optimize.extend(list(m.parameters())) config['optimizer'] = torch.optim.Adamax(params=params_to_optimize, lr=0.002) model = tasks.train(model, config) ### PHASE 2 - tune on whole train set the whole model config['datasets_dict'] = { 'train': dataset_train_full, } # change filename config['filename'] = config['filename'] + '_finetune' # tune the whole model params_to_optimize = list(model.parameters()) # reduce learning rate config['optimizer'] = torch.optim.Adamax(params=params_to_optimize, lr=0.0001)