Example #1
0
def train(print_loss_total,
          print_act_total,
          print_grad_total,
          input_tensor,
          target_tensor,
          bs_tensor,
          db_tensor,
          name=None):
    # create an empty matrix with padding tokens
    input_tensor, input_lengths = util.padSequence(input_tensor)
    target_tensor, target_lengths = util.padSequence(target_tensor)
    bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device)
    db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device)

    loss, loss_acts, grad = model.train(input_tensor, input_lengths,
                                        target_tensor, target_lengths,
                                        db_tensor, bs_tensor, name)

    #print(loss, loss_acts)
    print_loss_total += loss
    print_act_total += loss_acts
    print_grad_total += grad

    model.global_step += 1
    model.sup_loss = torch.zeros(1)

    return print_loss_total, print_act_total, print_grad_total
Example #2
0
def decode(data, model, device):
    # model, val_dials, test_dials = loadModelAndData(num)
    # device = torch.device("cuda" if args.cuda else "cpu")

    for ii in range(1):
        if ii == 0:
            # print(50 * '-' + 'GREEDY')
            model.beam_search = False
        else:
            print(50 * '-' + 'BEAM')
            model.beam_search = True

        # VALIDATION
        val_dials_gen = {}
        valid_loss = 0
        # for name, val_file in val_dials.items():
        for i in range(1):
            val_file = data['cur']
            input_tensor = [];  target_tensor = [];bs_tensor = [];db_tensor = []
            input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(model, val_file, input_tensor, target_tensor, bs_tensor, db_tensor)
            # create an empty matrix with padding tokens
            input_tensor, input_lengths = util.padSequence(input_tensor)
            target_tensor, target_lengths = util.padSequence(target_tensor)
            bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device)
            db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device)

            output_words, loss_sentence = model.predict(input_tensor, input_lengths, target_tensor, target_lengths,
                                                        db_tensor, bs_tensor)

            valid_loss += 0
            return output_words[-1]
Example #3
0
def trainIters(model, n_epochs=10, args=args):
    prev_min_loss, early_stop_count = 1 << 30, args.early_stop_count
    start = time.time()

    for epoch in range(1, n_epochs + 1):
        print_loss_total = 0
        print_grad_total = 0
        print_act_total = 0  # Reset every print_every
        start_time = time.time()
        # watch out where do you put it
        model.optimizer = Adam(lr=args.lr_rate,
                               params=filter(lambda x: x.requires_grad,
                                             model.parameters()),
                               weight_decay=args.l2_norm)
        model.optimizer_policy = Adam(lr=args.lr_rate,
                                      params=filter(lambda x: x.requires_grad,
                                                    model.policy.parameters()),
                                      weight_decay=args.l2_norm)

        dials = list(train_dials.keys())
        random.shuffle(dials)
        input_tensor = []
        target_tensor = []
        bs_tensor = []
        db_tensor = []
        for name in dials:
            val_file = train_dials[name]
            model.optimizer.zero_grad()
            model.optimizer_policy.zero_grad()

            input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(
                model, val_file, input_tensor, target_tensor, bs_tensor,
                db_tensor)

            if len(db_tensor) > args.batch_size:
                print_loss_total, print_act_total, print_grad_total = train(
                    print_loss_total, print_act_total, print_grad_total,
                    input_tensor, target_tensor, bs_tensor, db_tensor)
                input_tensor = []
                target_tensor = []
                bs_tensor = []
                db_tensor = []

        print_loss_avg = print_loss_total / len(train_dials)
        print_act_total_avg = print_act_total / len(train_dials)
        print_grad_avg = print_grad_total / len(train_dials)
        print('TIME:', time.time() - start_time)
        print(
            'Time since %s (Epoch:%d %d%%) Loss: %.4f, Loss act: %.4f, Grad: %.4f'
            %
            (util.timeSince(start, epoch / n_epochs), epoch, epoch / n_epochs *
             100, print_loss_avg, print_act_total_avg, print_grad_avg))

        # VALIDATION
        valid_loss = 0
        for name, val_file in val_dials.items():
            input_tensor = []
            target_tensor = []
            bs_tensor = []
            db_tensor = []
            input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(
                model, val_file, input_tensor, target_tensor, bs_tensor,
                db_tensor)
            # create an empty matrix with padding tokens
            input_tensor, input_lengths = util.padSequence(input_tensor)
            target_tensor, target_lengths = util.padSequence(target_tensor)
            bs_tensor = torch.tensor(bs_tensor,
                                     dtype=torch.float,
                                     device=device)
            db_tensor = torch.tensor(db_tensor,
                                     dtype=torch.float,
                                     device=device)

            proba, _, _ = model.forward(input_tensor, input_lengths,
                                        target_tensor, target_lengths,
                                        db_tensor, bs_tensor)
            proba = proba.view(-1, model.vocab_size)  # flatten all predictions
            loss = model.gen_criterion(proba, target_tensor.view(-1))
            valid_loss += loss.item()

        valid_loss /= len(val_dials)
        print('Current Valid LOSS:', valid_loss)

        model.saveModel(epoch)
Example #4
0
def decode(num=1):
    model, val_dials, test_dials = loadModelAndData(num)

    start_time = time.time()
    for ii in range(2):
        if ii == 0:
            print(50 * '-' + 'GREEDY')
            model.beam_search = False
        else:
            print(50 * '-' + 'BEAM')
            model.beam_search = True

        # VALIDATION
        val_dials_gen = {}
        valid_loss = 0
        for name, val_file in val_dials.items():
            input_tensor = [];  target_tensor = [];bs_tensor = [];db_tensor = []
            input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(model, val_file, input_tensor, target_tensor, bs_tensor, db_tensor)
            # create an empty matrix with padding tokens
            input_tensor, input_lengths = util.padSequence(input_tensor)
            target_tensor, target_lengths = util.padSequence(target_tensor)
            bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device)
            db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device)

            output_words, loss_sentence = model.predict(input_tensor, input_lengths, target_tensor, target_lengths,
                                                        db_tensor, bs_tensor)

            valid_loss += 0
            val_dials_gen[name] = output_words

        print('Current VALID LOSS:', valid_loss)
        with open(args.valid_output + 'val_dials_gen.json', 'w') as outfile:
            json.dump(val_dials_gen, outfile)
        evaluateModel(val_dials_gen, val_dials, mode='valid')

        # TESTING
        test_dials_gen = {}
        test_loss = 0
        idx = 0
        for name, test_file in test_dials.items():
            input_tensor = [];  target_tensor = [];bs_tensor = [];db_tensor = []
            input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(model, test_file, input_tensor, target_tensor, bs_tensor, db_tensor)
            # create an empty matrix with padding tokens
            input_tensor, input_lengths = util.padSequence(input_tensor)
            target_tensor, target_lengths = util.padSequence(target_tensor)
            bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device)
            db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device)

            output_words, loss_sentence = model.predict(input_tensor, input_lengths, target_tensor, target_lengths,
                                                        db_tensor, bs_tensor)
            test_loss += 0
            test_dials_gen[name] = output_words


        test_loss /= len(test_dials)
        print('Current TEST LOSS:', test_loss)
        with open(args.decode_output + 'test_dials_gen.json', 'w') as outfile:
            json.dump(test_dials_gen, outfile)
        evaluateModel(test_dials_gen, test_dials, mode='test')

    print('TIME:', time.time() - start_time)