def test_update_and_apply_growdiff():
    gdiff = GrowDiff()
    # update GrowDiff instance
    diffs = {
        'AWAGE': {2014: 0.01,
                  2016: 0.02}
    }
    gdiff.update_growdiff(diffs)
    expected_wage_diffs = [0.00, 0.01, 0.01, 0.02, 0.02]
    extra_years = GrowDiff.DEFAULT_NUM_YEARS - len(expected_wage_diffs)
    expected_wage_diffs.extend([0.02] * extra_years)
    assert np.allclose(gdiff._AWAGE, expected_wage_diffs, atol=0.0, rtol=0.0)
    # apply growdiff to GrowFactors instance
    gf = GrowFactors()
    syr = GrowDiff.JSON_START_YEAR
    nyrs = GrowDiff.DEFAULT_NUM_YEARS
    lyr = syr + nyrs - 1
    pir_pre = gf.price_inflation_rates(syr, lyr)
    wgr_pre = gf.wage_growth_rates(syr, lyr)
    gfactors = GrowFactors()
    gdiff.apply_to(gfactors)
    pir_pst = gfactors.price_inflation_rates(syr, lyr)
    wgr_pst = gfactors.wage_growth_rates(syr, lyr)
    expected_wgr_pst = [wgr_pre[i] + expected_wage_diffs[i]
                        for i in range(0, nyrs)]
    assert np.allclose(pir_pre, pir_pst, atol=0.0, rtol=0.0)
    assert np.allclose(wgr_pst, expected_wgr_pst, atol=1.0e-9, rtol=0.0)
def test_response_json(tests_path):
    """
    Check that each JSON file can be converted into dictionaries that
    can be used to construct objects needed for a Calculator object.
    """
    # pylint: disable=too-many-locals
    responses_path = os.path.join(tests_path, '..', 'responses', '*.json')
    for jpf in glob.glob(responses_path):
        # read contents of jpf (JSON parameter filename)
        jfile = open(jpf, 'r')
        jpf_text = jfile.read()
        # check that jpf_text can be used to construct objects
        response_file = ('"consumption"' in jpf_text
                         and '"growdiff_baseline"' in jpf_text
                         and '"growdiff_response"' in jpf_text)
        if response_file:
            consumption = Consumption()
            con_change = Consumption.read_json_update(jpf_text)
            consumption.update_consumption(con_change)
            del consumption
            for topkey in ['growdiff_baseline', 'growdiff_response']:
                growdiff = GrowDiff()
                gdiff_change = GrowDiff.read_json_update(jpf_text, topkey)
                growdiff.update_growdiff(gdiff_change)
                del growdiff
        else:  # jpf_text is not a valid JSON response assumption file
            print('test-failing-filename: ' + jpf)
            assert False
def test_has_any_response():
    start_year = GrowDiff.JSON_START_YEAR
    gdiff = GrowDiff()
    assert gdiff.current_year == start_year
    assert gdiff.has_any_response() is False
    gdiff.update_growdiff({'AWAGE': {2020: 0.01}})
    assert gdiff.current_year == start_year
    assert gdiff.has_any_response() is True
Example #4
0
def reform_warnings_errors(user_mods, using_puf):
    """
    The reform_warnings_errors function assumes user_mods is a dictionary
    returned by the Calculator.read_json_param_objects() function.

    This function returns a dictionary containing five STR:STR subdictionaries,
    where the dictionary keys are: 'policy', 'consumption',
    'growdiff_baseline' and 'growdiff_response'; and the subdictionaries are:
    {'warnings': '<empty-or-message(s)>', 'errors': '<empty-or-message(s)>'}.
    Note that non-policy parameters have no warnings, so the 'warnings'
    string for the non-policy parameters is always empty.
    """
    rtn_dict = {'policy': {'warnings': '', 'errors': ''},
                'consumption': {'warnings': '', 'errors': ''},
                'growdiff_baseline': {'warnings': '', 'errors': ''},
                'growdiff_response': {'warnings': '', 'errors': ''}}
    # create GrowDiff objects
    gdiff_baseline = GrowDiff()
    try:
        gdiff_baseline.update_growdiff(user_mods['growdiff_baseline'])
    except ValueError as valerr_msg:
        rtn_dict['growdiff_baseline']['errors'] = valerr_msg.__str__()
    gdiff_response = GrowDiff()
    try:
        gdiff_response.update_growdiff(user_mods['growdiff_response'])
    except ValueError as valerr_msg:
        rtn_dict['growdiff_response']['errors'] = valerr_msg.__str__()
    # create Growfactors object
    growfactors = GrowFactors()
    gdiff_baseline.apply_to(growfactors)
    gdiff_response.apply_to(growfactors)
    # create Policy object
    pol = Policy(gfactors=growfactors)
    try:
        pol.implement_reform(user_mods['policy'],
                             print_warnings=False,
                             raise_errors=False)
        if using_puf:
            rtn_dict['policy']['warnings'] = pol.parameter_warnings
        rtn_dict['policy']['errors'] = pol.parameter_errors
    except ValueError as valerr_msg:
        rtn_dict['policy']['errors'] = valerr_msg.__str__()
    # create Consumption object
    consump = Consumption()
    try:
        consump.update_consumption(user_mods['consumption'])
    except ValueError as valerr_msg:
        rtn_dict['consumption']['errors'] = valerr_msg.__str__()
    # return composite dictionary of warnings/errors
    return rtn_dict
def test_response_json(tests_path):
    """
    Check that each JSON file can be converted into dictionaries that
    can be used to construct objects needed for a Calculator object.
    """
    # pylint: disable=too-many-locals
    responses_path = os.path.join(tests_path, '..', 'responses', '*.json')
    for jpf in glob.glob(responses_path):
        # read contents of jpf (JSON parameter filename)
        jfile = open(jpf, 'r')
        jpf_text = jfile.read()
        # check that jpf_text can be used to construct objects
        response_file = ('"consumption"' in jpf_text and
                         '"behavior"' in jpf_text and
                         '"growdiff_baseline"' in jpf_text and
                         '"growdiff_response"' in jpf_text and
                         '"growmodel"' in jpf_text)
        if response_file:
            # pylint: disable=protected-access
            (con, beh, gdiff_base, gdiff_resp,
             grow_model) = Calculator._read_json_econ_assump_text(jpf_text)
            cons = Consumption()
            cons.update_consumption(con)
            behv = Behavior()
            behv.update_behavior(beh)
            growdiff_baseline = GrowDiff()
            growdiff_baseline.update_growdiff(gdiff_base)
            growdiff_response = GrowDiff()
            growdiff_response.update_growdiff(gdiff_resp)
            growmodel = GrowModel()
            growmodel.update_growmodel(grow_model)
        else:  # jpf_text is not a valid JSON response assumption file
            print('test-failing-filename: ' +
                  jpf)
            assert False
def test_response_json(tests_path):
    """
    Check that each JSON file can be converted into dictionaries that
    can be used to construct objects needed for a Calculator object.
    """
    # pylint: disable=too-many-locals
    responses_path = os.path.join(tests_path, '..', 'responses', '*.json')
    for jpf in glob.glob(responses_path):
        # read contents of jpf (JSON parameter filename)
        jfile = open(jpf, 'r')
        jpf_text = jfile.read()
        # check that jpf_text can be used to construct objects
        response_file = ('"consumption"' in jpf_text and
                         '"growdiff_baseline"' in jpf_text and
                         '"growdiff_response"' in jpf_text)
        if response_file:
            # pylint: disable=protected-access
            (con, gdiff_base,
             gdiff_resp) = Calculator._read_json_econ_assump_text(jpf_text)
            cons = Consumption()
            cons.update_consumption(con)
            growdiff_baseline = GrowDiff()
            growdiff_baseline.update_growdiff(gdiff_base)
            growdiff_response = GrowDiff()
            growdiff_response.update_growdiff(gdiff_resp)
        else:  # jpf_text is not a valid JSON response assumption file
            print('test-failing-filename: ' +
                  jpf)
            assert False
Example #7
0
def test_update_and_apply_growdiff():
    gdiff = GrowDiff()
    # update GrowDiff instance
    diffs = {'AWAGE': {2014: 0.01, 2016: 0.02}}
    gdiff.update_growdiff(diffs)
    expected_wage_diffs = [0.00, 0.01, 0.01, 0.02, 0.02]
    extra_years = GrowDiff.DEFAULT_NUM_YEARS - len(expected_wage_diffs)
    expected_wage_diffs.extend([0.02] * extra_years)
    assert np.allclose(gdiff._AWAGE, expected_wage_diffs, atol=0.0, rtol=0.0)
    # apply growdiff to GrowFactors instance
    gf = GrowFactors()
    syr = GrowDiff.JSON_START_YEAR
    nyrs = GrowDiff.DEFAULT_NUM_YEARS
    lyr = syr + nyrs - 1
    pir_pre = gf.price_inflation_rates(syr, lyr)
    wgr_pre = gf.wage_growth_rates(syr, lyr)
    gfactors = GrowFactors()
    gdiff.apply_to(gfactors)
    pir_pst = gfactors.price_inflation_rates(syr, lyr)
    wgr_pst = gfactors.wage_growth_rates(syr, lyr)
    expected_wgr_pst = [
        wgr_pre[i] + expected_wage_diffs[i] for i in range(0, nyrs)
    ]
    assert np.allclose(pir_pre, pir_pst, atol=0.0, rtol=0.0)
    assert np.allclose(wgr_pst, expected_wgr_pst, atol=1.0e-9, rtol=0.0)
def test_has_any_response():
    syr = 2014
    gdiff = GrowDiff(start_year=syr)
    assert gdiff.has_any_response() is False
    gdiff.update_growdiff({2020: {'_AWAGE': [0.01]}})
    assert gdiff.current_year == syr
    assert gdiff.has_any_response() is True
Example #9
0
def test_has_any_response():
    start_year = GrowDiff.JSON_START_YEAR
    gdiff = GrowDiff()
    assert gdiff.current_year == start_year
    assert gdiff.has_any_response() is False
    gdiff.update_growdiff({'AWAGE': {2020: 0.01}})
    assert gdiff.current_year == start_year
    assert gdiff.has_any_response() is True
def test_incorrect_update_growdiff():
    with pytest.raises(ValueError):
        GrowDiff().update_growdiff([])
    with pytest.raises(ValueError):
        GrowDiff().update_growdiff({'xyz': {'_ABOOK': [0.02]}})
    with pytest.raises(ValueError):
        GrowDiff().update_growdiff({2012: {'_ABOOK': [0.02]}})
    with pytest.raises(ValueError):
        GrowDiff().update_growdiff({2052: {'_ABOOK': [0.02]}})
    with pytest.raises(ValueError):
        GrowDiff().update_growdiff({2014: {'_MPC_exxxxx': [0.02]}})
    with pytest.raises(ValueError):
        GrowDiff().update_growdiff({2014: {'_ABOOK': [-1.1]}})
def test_update_and_apply_growdiff():
    syr = 2013
    nyrs = 5
    lyr = syr + nyrs - 1
    gdiff = GrowDiff(start_year=syr, num_years=nyrs)
    # update GrowDiff instance
    diffs = {2014: {'_AWAGE': [0.01]}, 2016: {'_AWAGE': [0.02]}}
    gdiff.update_growdiff(diffs)
    expected_wage_diffs = [0.00, 0.01, 0.01, 0.02, 0.02]
    assert_allclose(gdiff._AWAGE, expected_wage_diffs, atol=0.0, rtol=0.0)
    # apply growdiff to GrowFactors instance
    gf = GrowFactors()
    pir_pre = gf.price_inflation_rates(syr, lyr)
    wgr_pre = gf.wage_growth_rates(syr, lyr)
    gfactors = GrowFactors()
    gdiff.apply_to(gfactors)
    pir_pst = gfactors.price_inflation_rates(syr, lyr)
    wgr_pst = gfactors.wage_growth_rates(syr, lyr)
    expected_wgr_pst = [
        wgr_pre[i] + expected_wage_diffs[i] for i in range(0, nyrs)
    ]
    assert_allclose(pir_pre, pir_pst, atol=0.0, rtol=0.0)
    assert_allclose(wgr_pst, expected_wgr_pst, atol=1.0e-9, rtol=0.0)
Example #12
0
def calculators(year_n, start_year,
                use_puf_not_cps,
                use_full_sample,
                user_mods):
    """
    This function assumes that the specified user_mods is a dictionary
      returned by the Calculator.read_json_param_objects() function.
    This function returns (calc1, calc2) where
      calc1 is pre-reform Calculator object for year_n, and
      calc2 is post-reform Calculator object for year_n.
    Neither Calculator object has had the calc_all() method executed.
    """
    # pylint: disable=too-many-locals,too-many-branches,too-many-statements

    check_user_mods(user_mods)

    # specify Consumption instance
    consump = Consumption()
    consump_assumptions = user_mods['consumption']
    consump.update_consumption(consump_assumptions)

    # specify growdiff_baseline and growdiff_response
    growdiff_baseline = GrowDiff()
    growdiff_response = GrowDiff()
    growdiff_base_assumps = user_mods['growdiff_baseline']
    growdiff_resp_assumps = user_mods['growdiff_response']
    growdiff_baseline.update_growdiff(growdiff_base_assumps)
    growdiff_response.update_growdiff(growdiff_resp_assumps)

    # create pre-reform and post-reform GrowFactors instances
    growfactors_pre = GrowFactors()
    growdiff_baseline.apply_to(growfactors_pre)
    growfactors_post = GrowFactors()
    growdiff_baseline.apply_to(growfactors_post)
    growdiff_response.apply_to(growfactors_post)

    # create sample pd.DataFrame from specified input file and sampling scheme
    tbi_path = os.path.abspath(os.path.dirname(__file__))
    if use_puf_not_cps:
        # first try TaxBrain deployment path
        input_path = 'puf.csv.gz'
        if not os.path.isfile(input_path):
            # otherwise try local Tax-Calculator deployment path
            input_path = os.path.join(tbi_path, '..', '..', 'puf.csv')
        sampling_frac = 0.05
        sampling_seed = 2222
    else:  # if using cps input not puf input
        # first try Tax-Calculator code path
        input_path = os.path.join(tbi_path, '..', 'cps.csv.gz')
        if not os.path.isfile(input_path):
            # otherwise read from taxcalc package "egg"
            input_path = None  # pragma: no cover
            full_sample = read_egg_csv('cps.csv.gz')  # pragma: no cover
        sampling_frac = 0.03
        sampling_seed = 180
    if input_path:
        full_sample = pd.read_csv(input_path)
    if use_full_sample:
        sample = full_sample
    else:
        sample = full_sample.sample(frac=sampling_frac,
                                    random_state=sampling_seed)

    # create pre-reform Calculator instance
    if use_puf_not_cps:
        recs1 = Records(data=sample,
                        gfactors=growfactors_pre)
    else:
        recs1 = Records.cps_constructor(data=sample,
                                        gfactors=growfactors_pre)
    policy1 = Policy(gfactors=growfactors_pre)
    calc1 = Calculator(policy=policy1, records=recs1, consumption=consump)
    while calc1.current_year < start_year:
        calc1.increment_year()
    assert calc1.current_year == start_year

    # create post-reform Calculator instance
    if use_puf_not_cps:
        recs2 = Records(data=sample,
                        gfactors=growfactors_post)
    else:
        recs2 = Records.cps_constructor(data=sample,
                                        gfactors=growfactors_post)
    policy2 = Policy(gfactors=growfactors_post)
    policy_reform = user_mods['policy']
    policy2.implement_reform(policy_reform)
    calc2 = Calculator(policy=policy2, records=recs2, consumption=consump)
    while calc2.current_year < start_year:
        calc2.increment_year()
    assert calc2.current_year == start_year

    # delete objects now embedded in calc1 and calc2
    del sample
    del full_sample
    del consump
    del growdiff_baseline
    del growdiff_response
    del growfactors_pre
    del growfactors_post
    del recs1
    del recs2
    del policy1
    del policy2

    # increment Calculator objects for year_n years
    for _ in range(0, year_n):
        calc1.increment_year()
        calc2.increment_year()

    # return Calculator objects
    return (calc1, calc2)
Example #13
0
def reform_warnings_errors(user_mods, using_puf):
    """
    The reform_warnings_errors function assumes user_mods is a dictionary
    returned by the Calculator.read_json_param_objects() function.

    This function returns a dictionary containing five STR:STR subdictionaries,
    where the dictionary keys are: 'policy', 'behavior', consumption',
    'growdiff_baseline' and 'growdiff_response'; and the subdictionaries are:
    {'warnings': '<empty-or-message(s)>', 'errors': '<empty-or-message(s)>'}.
    Note that non-policy parameters have no warnings, so the 'warnings'
    string for the non-policy parameters is always empty.
    """
    rtn_dict = {'policy': {'warnings': '', 'errors': ''},
                'behavior': {'warnings': '', 'errors': ''},
                'consumption': {'warnings': '', 'errors': ''},
                'growdiff_baseline': {'warnings': '', 'errors': ''},
                'growdiff_response': {'warnings': '', 'errors': ''}}
    # create GrowDiff objects
    gdiff_baseline = GrowDiff()
    try:
        gdiff_baseline.update_growdiff(user_mods['growdiff_baseline'])
    except ValueError as valerr_msg:
        rtn_dict['growdiff_baseline']['errors'] = valerr_msg.__str__()
    gdiff_response = GrowDiff()
    try:
        gdiff_response.update_growdiff(user_mods['growdiff_response'])
    except ValueError as valerr_msg:
        rtn_dict['growdiff_response']['errors'] = valerr_msg.__str__()
    # create Growfactors object
    growfactors = GrowFactors()
    gdiff_baseline.apply_to(growfactors)
    gdiff_response.apply_to(growfactors)
    # create Policy object
    pol = Policy(gfactors=growfactors)
    try:
        pol.implement_reform(user_mods['policy'],
                             print_warnings=False,
                             raise_errors=False)
        if using_puf:
            rtn_dict['policy']['warnings'] = pol.parameter_warnings
        rtn_dict['policy']['errors'] = pol.parameter_errors
    except ValueError as valerr_msg:
        rtn_dict['policy']['errors'] = valerr_msg.__str__()
    # create Behavior object
    behv = Behavior()
    try:
        behv.update_behavior(user_mods['behavior'])
    except ValueError as valerr_msg:
        rtn_dict['behavior']['errors'] = valerr_msg.__str__()
    # create Consumption object
    consump = Consumption()
    try:
        consump.update_consumption(user_mods['consumption'])
    except ValueError as valerr_msg:
        rtn_dict['consumption']['errors'] = valerr_msg.__str__()
    # return composite dictionary of warnings/errors
    return rtn_dict
Example #14
0
def calculator_objects(year_n, start_year,
                       use_puf_not_cps,
                       use_full_sample,
                       user_mods,
                       behavior_allowed):
    """
    This function assumes that the specified user_mods is a dictionary
      returned by the Calculator.read_json_param_objects() function.
    This function returns (calc1, calc2) where
      calc1 is pre-reform Calculator object calculated for year_n, and
      calc2 is post-reform Calculator object calculated for year_n.
    Set behavior_allowed to False when generating static results or
      set behavior_allowed to True when generating dynamic results.
    """
    # pylint: disable=too-many-arguments,too-many-locals
    # pylint: disable=too-many-branches,too-many-statements

    check_user_mods(user_mods)

    # specify Consumption instance
    consump = Consumption()
    consump_assumptions = user_mods['consumption']
    consump.update_consumption(consump_assumptions)

    # specify growdiff_baseline and growdiff_response
    growdiff_baseline = GrowDiff()
    growdiff_response = GrowDiff()
    growdiff_base_assumps = user_mods['growdiff_baseline']
    growdiff_resp_assumps = user_mods['growdiff_response']
    growdiff_baseline.update_growdiff(growdiff_base_assumps)
    growdiff_response.update_growdiff(growdiff_resp_assumps)

    # create pre-reform and post-reform GrowFactors instances
    growfactors_pre = GrowFactors()
    growdiff_baseline.apply_to(growfactors_pre)
    growfactors_post = GrowFactors()
    growdiff_baseline.apply_to(growfactors_post)
    growdiff_response.apply_to(growfactors_post)

    # create sample pd.DataFrame from specified input file and sampling scheme
    tbi_path = os.path.abspath(os.path.dirname(__file__))
    if use_puf_not_cps:
        # first try TaxBrain deployment path
        input_path = 'puf.csv.gz'
        if not os.path.isfile(input_path):
            # otherwise try local Tax-Calculator deployment path
            input_path = os.path.join(tbi_path, '..', '..', 'puf.csv')
        sampling_frac = 0.05
        sampling_seed = 2222
    else:  # if using cps input not puf input
        # first try Tax-Calculator code path
        input_path = os.path.join(tbi_path, '..', 'cps.csv.gz')
        if not os.path.isfile(input_path):
            # otherwise read from taxcalc package "egg"
            input_path = None  # pragma: no cover
            full_sample = read_egg_csv('cps.csv.gz')  # pragma: no cover
        sampling_frac = 0.03
        sampling_seed = 180
    if input_path:
        full_sample = pd.read_csv(input_path)
    if use_full_sample:
        sample = full_sample
    else:
        sample = full_sample.sample(frac=sampling_frac,
                                    random_state=sampling_seed)

    # create pre-reform Calculator instance
    if use_puf_not_cps:
        recs1 = Records(data=sample,
                        gfactors=growfactors_pre)
    else:
        recs1 = Records.cps_constructor(data=sample,
                                        gfactors=growfactors_pre)
    policy1 = Policy(gfactors=growfactors_pre)
    calc1 = Calculator(policy=policy1, records=recs1, consumption=consump)
    while calc1.current_year < start_year:
        calc1.increment_year()
    calc1.calc_all()
    assert calc1.current_year == start_year

    # specify Behavior instance
    behv = Behavior()
    behavior_assumps = user_mods['behavior']
    behv.update_behavior(behavior_assumps)

    # always prevent both behavioral response and growdiff response
    if behv.has_any_response() and growdiff_response.has_any_response():
        msg = 'BOTH behavior AND growdiff_response HAVE RESPONSE'
        raise ValueError(msg)

    # optionally prevent behavioral response
    if behv.has_any_response() and not behavior_allowed:
        msg = 'A behavior RESPONSE IS NOT ALLOWED'
        raise ValueError(msg)

    # create post-reform Calculator instance
    if use_puf_not_cps:
        recs2 = Records(data=sample,
                        gfactors=growfactors_post)
    else:
        recs2 = Records.cps_constructor(data=sample,
                                        gfactors=growfactors_post)
    policy2 = Policy(gfactors=growfactors_post)
    policy_reform = user_mods['policy']
    policy2.implement_reform(policy_reform)
    calc2 = Calculator(policy=policy2, records=recs2,
                       consumption=consump, behavior=behv)
    while calc2.current_year < start_year:
        calc2.increment_year()
    assert calc2.current_year == start_year

    # delete objects now embedded in calc1 and calc2
    del sample
    del full_sample
    del consump
    del growdiff_baseline
    del growdiff_response
    del growfactors_pre
    del growfactors_post
    del behv
    del recs1
    del recs2
    del policy1
    del policy2

    # increment Calculator objects for year_n years and calculate
    for _ in range(0, year_n):
        calc1.increment_year()
        calc2.increment_year()
    calc1.calc_all()
    if calc2.behavior_has_response():
        calc2 = Behavior.response(calc1, calc2)
    else:
        calc2.calc_all()

    # return calculated Calculator objects
    return (calc1, calc2)
def test_incorrect_growdiff_ctor():
    with pytest.raises(ValueError):
        gdiff = GrowDiff(start_year=2000)
    with pytest.raises(ValueError):
        gdiff = GrowDiff(num_years=0)
Example #16
0
def calculators(year_n, start_year,
                use_puf_not_cps,
                use_full_sample,
                user_mods):
    """
    This function assumes that the specified user_mods is a dictionary
      returned by the Calculator.read_json_param_objects() function.
    This function returns (calc1, calc2) where
      calc1 is pre-reform Calculator object for year_n, and
      calc2 is post-reform Calculator object for year_n.
    Neither Calculator object has had the calc_all() method executed.
    """
    # pylint: disable=too-many-locals,too-many-branches,too-many-statements

    check_user_mods(user_mods)

    # specify Consumption instance
    consump = Consumption()
    consump_assumptions = user_mods['consumption']
    consump.update_consumption(consump_assumptions)

    # specify growdiff_baseline and growdiff_response
    growdiff_baseline = GrowDiff()
    growdiff_response = GrowDiff()
    growdiff_base_assumps = user_mods['growdiff_baseline']
    growdiff_resp_assumps = user_mods['growdiff_response']
    growdiff_baseline.update_growdiff(growdiff_base_assumps)
    growdiff_response.update_growdiff(growdiff_resp_assumps)

    # create pre-reform and post-reform GrowFactors instances
    growfactors_pre = GrowFactors()
    growdiff_baseline.apply_to(growfactors_pre)
    growfactors_post = GrowFactors()
    growdiff_baseline.apply_to(growfactors_post)
    growdiff_response.apply_to(growfactors_post)

    # create sample pd.DataFrame from specified input file and sampling scheme
    tbi_path = os.path.abspath(os.path.dirname(__file__))
    if use_puf_not_cps:
        # first try TaxBrain deployment path
        input_path = 'puf.csv.gz'
        if not os.path.isfile(input_path):
            # otherwise try local Tax-Calculator deployment path
            input_path = os.path.join(tbi_path, '..', '..', 'puf.csv')
        sampling_frac = 0.05
        sampling_seed = 2222
    else:  # if using cps input not puf input
        # first try Tax-Calculator code path
        input_path = os.path.join(tbi_path, '..', 'cps.csv.gz')
        if not os.path.isfile(input_path):
            # otherwise read from taxcalc package "egg"
            input_path = None  # pragma: no cover
            full_sample = read_egg_csv('cps.csv.gz')  # pragma: no cover
        sampling_frac = 0.03
        sampling_seed = 180
    if input_path:
        full_sample = pd.read_csv(input_path)
    if use_full_sample:
        sample = full_sample
    else:
        sample = full_sample.sample(frac=sampling_frac,
                                    random_state=sampling_seed)

    # create pre-reform Calculator instance
    if use_puf_not_cps:
        recs1 = Records(data=sample,
                        gfactors=growfactors_pre)
    else:
        recs1 = Records.cps_constructor(data=sample,
                                        gfactors=growfactors_pre)
    policy1 = Policy(gfactors=growfactors_pre)
    calc1 = Calculator(policy=policy1, records=recs1, consumption=consump)
    while calc1.current_year < start_year:
        calc1.increment_year()
    assert calc1.current_year == start_year

    # create post-reform Calculator instance
    if use_puf_not_cps:
        recs2 = Records(data=sample,
                        gfactors=growfactors_post)
    else:
        recs2 = Records.cps_constructor(data=sample,
                                        gfactors=growfactors_post)
    policy2 = Policy(gfactors=growfactors_post)
    policy_reform = user_mods['policy']
    policy2.implement_reform(policy_reform)
    calc2 = Calculator(policy=policy2, records=recs2, consumption=consump)
    while calc2.current_year < start_year:
        calc2.increment_year()
    assert calc2.current_year == start_year

    # delete objects now embedded in calc1 and calc2
    del sample
    del full_sample
    del consump
    del growdiff_baseline
    del growdiff_response
    del growfactors_pre
    del growfactors_post
    del recs1
    del recs2
    del policy1
    del policy2

    # increment Calculator objects for year_n years
    for _ in range(0, year_n):
        calc1.increment_year()
        calc2.increment_year()

    # return Calculator objects
    return (calc1, calc2)