Example #1
0
    def _run_single_set(self, param, overwrite=False, run_parallel=False):
        """Run TCAV with provided for one set of (target, concepts).

    Args:
      param: parameters to run
      overwrite: if True, overwrite any saved CAV files.
      run_parallel: run this parallel.

    Returns:
      a dictionary of results (panda frame)
    """
        bottleneck = param.bottleneck
        concepts = param.concepts
        target_class = param.target_class
        activation_generator = param.activation_generator
        alpha = param.alpha
        mymodel = param.model
        cav_dir = param.cav_dir
        # first check if target class is in model.

        tf.logging.info('running %s %s' % (target_class, concepts))

        # Get acts
        acts = activation_generator.process_and_load_activations(
            [bottleneck], concepts + [target_class])
        # Get CAVs
        cav_hparams = CAV.default_hparams()
        cav_hparams.alpha = alpha
        cav_instance = get_or_train_cav(concepts,
                                        bottleneck,
                                        acts,
                                        cav_dir=cav_dir,
                                        cav_hparams=cav_hparams,
                                        overwrite=overwrite)
        # clean up
        for c in concepts:
            del acts[c]

        # Hypo testing
        a_cav_key = CAV.cav_key(concepts, bottleneck, cav_hparams.model_type,
                                cav_hparams.alpha)
        target_class_for_compute_tcav_score = target_class

        cav_concept = concepts[0]
        i_up = self.compute_tcav_score(
            mymodel,
            target_class_for_compute_tcav_score,
            cav_concept,
            cav_instance,
            acts[target_class][cav_instance.bottleneck],
            activation_generator.get_examples_for_concept(target_class),
            run_parallel=run_parallel)
        val_directional_dirs = self.get_directional_dir(
            mymodel, target_class_for_compute_tcav_score, cav_concept,
            cav_instance, acts[target_class][cav_instance.bottleneck],
            activation_generator.get_examples_for_concept(target_class))
        result = {
            'cav_key': a_cav_key,
            'cav_concept': cav_concept,
            'negative_concept': concepts[1],
            'target_class': target_class,
            'cav_accuracies': cav_instance.accuracies,
            'i_up': i_up,
            'val_directional_dirs_abs_mean':
            np.mean(np.abs(val_directional_dirs)),
            'val_directional_dirs_mean': np.mean(val_directional_dirs),
            'val_directional_dirs_std': np.std(val_directional_dirs),
            'val_directional_dirs': val_directional_dirs,
            'note': 'alpha_%s ' % (alpha),
            'alpha': alpha,
            'bottleneck': bottleneck
        }
        del acts
        return result
Example #2
0
 def test_default_hparams(self):
     hparam = CAV.default_hparams()
     self.assertEqual(hparam['alpha'], 0.01)
     self.assertEqual(hparam['model_type'], 'linear')
Example #3
0
    def _run_single_set(self, param):
        """Run TCAV with provided for one set of (target, concepts).

    Args:
      param: parameters to run

    Returns:
      a dictionary of results (panda frame)
    """
        bottleneck = param.bottleneck
        concepts = param.concepts
        target_class = param.target_class
        activation_generator = param.activation_generator
        alpha = param.alpha
        mymodel = param.model
        cav_dir = param.cav_dir
        # first check if target class is in model.

        tf.logging.info('running %s %s' % (target_class, concepts))
        print("running: target->", target_class, " concepts->", concepts)

        # Get acts
        if self.use_numeric_class_label:
            # To correctly concatenate strings with the target class, we cast it into a string
            in_target_class = str(
                target_class) if self.use_numeric_class_label else target_class
            acts = activation_generator.process_and_load_activations(
                [bottleneck], concepts + [in_target_class], target_class)
        else:
            acts = activation_generator.process_and_load_activations(
                [bottleneck], concepts + [in_target_class])

        # Get CAVs
        cav_hparams = CAV.default_hparams()
        cav_hparams.alpha = alpha
        cav_instance = get_or_train_cav(concepts,
                                        bottleneck,
                                        acts,
                                        cav_dir=cav_dir,
                                        cav_hparams=cav_hparams)

        # clean up
        for c in concepts:
            del acts[c]

        # Hypo testing
        a_cav_key = CAV.cav_key(concepts, bottleneck, cav_hparams.model_type,
                                cav_hparams.alpha)
        if self.use_numeric_class_label:
            target_class_for_compute_tcav_score = target_class + 1
        else:
            target_class_for_compute_tcav_score = mymodel.label_to_id(
                target_class) + 1

        for cav_concept in concepts:
            if cav_concept is self.random_counterpart or 'random500' not in cav_concept:
                i_up = self.compute_tcav_score(
                    mymodel,
                    target_class_for_compute_tcav_score,
                    cav_concept,
                    cav_instance,
                    acts[str(target_class)][cav_instance.bottleneck],
                )
                val_directional_dirs = self.get_directional_dir(
                    mymodel, target_class_for_compute_tcav_score, cav_concept,
                    cav_instance,
                    acts[str(target_class)][cav_instance.bottleneck])
                result = {
                    'cav_key':
                    a_cav_key,
                    'cav_concept':
                    cav_concept,
                    'target_class':
                    target_class,
                    'i_up':
                    i_up,
                    'val_directional_dirs_abs_mean':
                    np.mean(np.abs(val_directional_dirs)),
                    'val_directional_dirs_mean':
                    np.mean(val_directional_dirs),
                    'val_directional_dirs_std':
                    np.std(val_directional_dirs),
                    'note':
                    'alpha_%s ' % (alpha),
                    'alpha':
                    alpha,
                    'bottleneck':
                    bottleneck
                }
        del acts
        return result
 def test_default_hparams(self):
     hparam = CAV.default_hparams()
     self.assertEqual(hparam.alpha, 0.01)
     self.assertEqual(hparam.model_type, 'linear')
Example #5
0
File: tcav.py Project: munema/tcav
    def _run_single_set(self, param, overwrite=False, run_parallel=False):
        """Run TCAV with provided for one set of (target, concepts).

    Args:
      param: parameters to run
      overwrite: if True, overwrite any saved CAV files.
      run_parallel: run this parallel.

    Returns:
      a dictionary of results (panda frame)
    """

        bottleneck = param.bottleneck
        concepts = param.concepts
        target_class = param.target_class
        activation_generator = param.activation_generator
        alpha = param.alpha
        mymodel = param.model
        cav_dir = param.cav_dir
        # first check if target class is in model.

        tf.logging.info('running %s %s' % (target_class, concepts))
        keyword = ''
        is_keyword = False
        if self.logit_grad:
            keyword += ':logit_grad'
            is_keyword = True
        if self.grad_nomalize:
            keyword += ':grad_nomalize'
            is_keyword = True
        if is_keyword:
            keyword += ':'
        if self.make_random and os.path.exists(
                self.tcav_dir +
                '{}:{}:{}:{}_{}{}'.format(bottleneck, target_class, alpha,
                                          concepts[0], concepts[1], keyword)):
            return None

        # Get acts
        acts = activation_generator.process_and_load_activations(
            [bottleneck], concepts + [target_class])
        # Get CAVs
        cav_hparams = CAV.default_hparams()
        cav_hparams.alpha = alpha
        cav_instance = get_or_train_cav(concepts,
                                        bottleneck,
                                        acts,
                                        cav_dir=cav_dir,
                                        cav_hparams=cav_hparams,
                                        overwrite=overwrite)

        if self.true_cav == False:
            # clean up
            for c in concepts:
                del acts[c]

        # Hypo testing
        a_cav_key = CAV.cav_key(concepts, bottleneck, cav_hparams.model_type,
                                cav_hparams.alpha)
        target_class_for_compute_tcav_score = target_class

        cav_concept = concepts[0]
        #tmp = activation_generator.get_examples_for_concept(target_class)
        i_up = self.compute_tcav_score(
            mymodel,
            target_class_for_compute_tcav_score,
            cav_concept,
            cav_instance,
            acts[target_class][cav_instance.bottleneck],
            activation_generator.get_examples_for_concept(target_class),
            acts,
            cav_instance.bottleneck,
            activation_generator,
            cav_dir,
            self.true_cav,
            self.logit_grad,
            run_parallel=run_parallel)
        val_directional_dirs = self.get_directional_dir_plus(
            mymodel, target_class_for_compute_tcav_score, cav_concept,
            cav_instance, acts[target_class][cav_instance.bottleneck],
            activation_generator.get_examples_for_concept(target_class),
            self.cav_dir, self.project_name, bottleneck, concepts[1], acts,
            activation_generator, self.true_cav, self.logit_grad,
            self.grad_nomalize, self.make_random)
        result = {
            'cav_key': a_cav_key,
            'cav_concept': cav_concept,
            'negative_concept': concepts[1],
            'target_class': target_class,
            'cav_accuracies': cav_instance.accuracies,
            'i_up': i_up,
            'val_directional_dirs': val_directional_dirs,
            'alpha': alpha,
            'bottleneck': bottleneck
        }
        del acts

        if self.make_random and not os.path.exists(
                self.tcav_dir +
                '{}:{}:{}:{}_{}{}'.format(bottleneck, target_class, alpha,
                                          concepts[0], concepts[1], keyword)):
            pickle_dump(
                result, self.tcav_dir +
                '{}:{}:{}:{}_{}{}'.format(bottleneck, target_class, alpha,
                                          concepts[0], concepts[1], keyword))
        return result