Example #1
0
def TCN(input_layer, output_size, num_channels, sequence_length, kernel_size,
        dropout):
    # tcn is of shape (batch_size, seq_len, num_channels[-1](usually hidden size))
    tcn = TemporalConvNet(input_layer=input_layer,
                          num_channels=num_channels,
                          sequence_length=sequence_length,
                          kernel_size=kernel_size,
                          dropout=dropout)
    linear = tf.contrib.layers.fully_connected(tcn[:, -1, :],
                                               output_size,
                                               activation_fn=None)
    return linear
Example #2
0
def TCN(input_layer,
        output_size,
        num_channels,
        embedding_size,
        kernel_size,
        dropout,
        bn_switch=None,
        init=False):
    """ 
      shapes:
      input_layer: b_s, L contains the integer ID
      output_size should be vocab_size

    """
    initrange = 0.1
    keep_prob_emb = 1.0 - dropout
    sequence_length = input_layer.get_shape()[-1]
    embeddings = tf.get_variable('embedding',
                                 shape=[output_size, embedding_size],
                                 dtype=tf.float32,
                                 initializer=tf.initializers.random_uniform(
                                     -initrange, initrange))
    embedded_input = tf.nn.embedding_lookup(embeddings, input_layer)
    drop = tf.nn.dropout(embedded_input, keep_prob_emb)

    tcn = TemporalConvNet(input_layer=drop,
                          num_channels=num_channels,
                          sequence_length=sequence_length,
                          kernel_size=kernel_size,
                          dropout=dropout,
                          init=init)

    decoder_b = tf.get_variable('b_h',
                                shape=[output_size],
                                dtype=tf.float32,
                                initializer=tf.zeros_initializer(),
                                trainable=True)
    decoder = tf.nn.bias_add(
        tf.nn.convolution(tcn, tf.expand_dims(tf.transpose(embeddings),
                                              axis=0), 'SAME'), decoder_b)

    return decoder
Example #3
0
    def __init__(self, tcn_params, cnp_params, class_imb, L2_penalty):
        #n_channels, levels, kernel_size, dropout, self.n_classes = tcn_params 
        #unpack tcn parameters    
        n_channels = tcn_params['n_channels']
        levels = tcn_params['levels']
        kernel_size = tcn_params['kernel_size']
        dropout = tcn_params['dropout']
        self.n_classes = tcn_params['n_classes']
        self.n_data_channels = cnp_params['num_channels']
        #encoder_output_sizes = cnp_params['encoder_output_sizes']
        #decoder_output_sizes = cnp_params['decoder_output_sizes']
        encoder_output_sizes = [cnp_params['encoder_output_size'] for i in range(cnp_params['encoder_levels']) ]
        decoder_output_sizes = [cnp_params['decoder_output_size'] for i in range(cnp_params['decoder_levels']-1)]
        decoder_output_sizes.append(2)

        self.cnp = DeterministicModel(encoder_output_sizes, decoder_output_sizes,self.n_data_channels, compute_loss= True)
        self.tcn = TemporalConvNet([n_channels] * levels, kernel_size, dropout)
        
        self.class_imb = class_imb
        self.L2_penalty = L2_penalty
Example #4
0
def TCN(input_layer,
        output_size,
        num_channels,
        embedding_size,
        kernel_size,
        dropout,
        init=False):
    """ 
      shapes:
      input_layer: b_s, L contains the integer ID
      output_size should be vocab_size

    """
    initrange = 0.1
    keep_prob_emb = 1.0
    sequence_length = input_layer.get_shape()[-1]
    embeddings = tf.get_variable('embedding',
                                 shape=[output_size, embedding_size],
                                 dtype=tf.float32,
                                 initializer=tf.initializers.random_uniform(
                                     -initrange, initrange))
    embedded_input = tf.nn.embedding_lookup(embeddings, input_layer)
    drop = tf.nn.dropout(embedded_input, keep_prob_emb)
    tcn = TemporalConvNet(input_layer=drop,
                          num_channels=num_channels,
                          sequence_length=sequence_length,
                          kernel_size=kernel_size,
                          dropout=dropout,
                          init=init)
    decoder = tf.contrib.layers.fully_connected(
        tcn,
        output_size,
        activation_fn=None,
        weights_initializer=tf.initializers.random_uniform(
            -initrange, initrange))
    return decoder
Example #5
0
}, {
    'filter_count': 128,
    'kernel_size': 15,
    'dilation_rate': 3,
    'activation_func': tf.nn.elu,
    'res_activation_func': tf.nn.elu,
    'dropout_rate': 0
}]

# data constants
TOTAL_DAYS = 746
DPS_PER_DAY = 270

# build model
print('Building model...')
net = TemporalConvNet('temp-convnet', BLOCK_CONFIG, NUM_CLASSES)
net.build((None, TIMESTEPS, INPUT_CHANNELS))
net.summary()

# compile model
print('\nCompiling model...')
net.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
            loss=MulticlassBinaryCrossEntropy(),
            metrics=[tf.keras.metrics.Precision(),
                     tf.keras.metrics.Recall()])

# get data sequence
print('\nFetching data sequence...')
seq = ProcessedSequence(50, 0.1, 0.1)
validation_set = seq.get_validation_set()
test_set = seq.get_test_set()
Example #6
0
                data.append(val)
            except StopIteration:
                raw_data.append(data)
                break

    return raw_data


# fetch data
x = preload_data('../data/{}.nosync/{}m-x.csv'.format(TICKER, MULT))
y = preload_data('../data/{}.nosync/{}m-y.csv'.format(TICKER, MULT))

# build model
print('Building model...')
net = TemporalConvNet('temp-convnet', BLOCK_CONFIG, NUM_CLASSES)
net.build((None, WINDOW_BARS_SIZE, INPUT_CHANNELS))
net.summary()

# compile model
print('\nCompiling model...')
net.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
            loss=tf.keras.losses.BinaryCrossentropy(),
            metrics=[
                tf.keras.metrics.Accuracy(),
                tf.keras.metrics.Precision(),
                tf.keras.metrics.Recall()
            ])

# train model
for epoch in range(EPOCHS):
Example #7
0
def TCN(input_layer, output_size, num_channels, sequence_length, kernel_size, dropout, init=False):
    tcn = TemporalConvNet(input_layer=input_layer, num_channels=num_channels, sequence_length=sequence_length,
     kernel_size=kernel_size, dropout=dropout, init=init)
    linear = tf.contrib.layers.fully_connected(tcn[:, -1, :], output_size, activation_fn=None, 
    	weights_initializer=tf.initializers.random_normal(0, 0.01))
    return linear