phi=phi, gamma=gamma) lstd.name = r"FPKF({}) $\alpha$={} $\beta={}$".format(lam, alpha, beta) lstd.color = "g" lstd.ls = "-." methods.append(lstd) alpha = .5 rg = td.ResidualGradientDS(alpha=alpha, phi=phi, gamma=gamma) rg.name = r"RG DS $\alpha$={}".format(alpha) rg.color = "brown" rg.ls = "--" methods.append(rg) alpha = .5 rg = td.ResidualGradient(alpha=alpha, phi=phi, gamma=gamma) rg.name = r"RG $\alpha$={}".format(alpha) rg.color = "brown" methods.append(rg) brm = td.RecursiveBRMDS(phi=phi, eps=1e5) brm.name = "BRMDS" brm.color = "b" brm.ls = "--" methods.append(brm) brm = td.RecursiveBRM(phi=phi, eps=1e5) brm.name = "BRM" brm.color = "b" methods.append(brm)
brm.ls = "--" methods.append(brm) brm = td.RecursiveBRM(phi=phi) brm.name = "BRM" brm.color = "b" methods.append(brm) alpha = 0.5 rg = td.ResidualGradientDS(alpha=alpha, phi=phi) rg.name = r"RG DS $\alpha$={}".format(alpha) rg.ls = "--" methods.append(rg) alpha = 0.5 rg = td.ResidualGradient(alpha=alpha, phi=phi) rg.name = r"RG $\alpha$={}".format(alpha) methods.append(rg) eta = 0.001 reward_noise = 0.001 P_init = 1. ktd = td.KTD(phi=phi, gamma=1., P_init=P_init, theta_noise=None, eta=eta, reward_noise=reward_noise) ktd.name = r"KTD $\eta$={}, $\sigma^2$={} $P_0$={}".format( eta, reward_noise, P_init) #methods.append(ktd) sigma = 1. gptdp = td.GPTDP(phi=phi, sigma=sigma) gptdp.name = r"GPTDP $\sigma$={}".format(sigma)