def on_frame(self, resp: List[bytes]) -> List[dict]: """ Update the avatar based on its current arm-bending goals and its state. If the avatar has achieved a goal (for example, picking up an object), it will stop moving that arm. Update the avatar's state as needed. :param resp: The response from the build. :return: A list of commands to pick up, stop moving, etc. """ def _get_mitten_position(a: Arm) -> np.array: """ :param a: The arm. :return: The position of a mitten. """ if a == Arm.left: return np.array(frame.get_mitten_center_left_position()) else: return np.array(frame.get_mitten_center_right_position()) # Update dynamic data. frame = self._get_frame(resp=resp) # Update dynamic collision data. self.collisions.clear() self.env_collisions.clear() # Get each collision. for i in range(len(resp) - 1): r_id = OutputData.get_data_type_id(resp[i]) if r_id == "coll": coll = Collision(resp[i]) collider_id = coll.get_collider_id() collidee_id = coll.get_collidee_id() # Check if this was a mitten, if we're supposed to stop if there's a collision, # and if the collision was not with the target. for arm in self._ik_goals: if self._ik_goals[arm] is not None: if (collider_id == self.mitten_ids[arm] or collidee_id == self.mitten_ids[arm]) and \ (collider_id not in frame.get_held_right() and collider_id not in frame.get_held_left() and collidee_id not in frame.get_held_right() and collidee_id not in frame.get_held_left()) and \ self._ik_goals[arm].stop_on_mitten_collision and \ (self._ik_goals[arm].target is None or (self._ik_goals[arm].pick_up_id != collidee_id and self._ik_goals[arm].pick_up_id != collider_id)) and \ (collidee_id not in self.body_parts_static or collider_id not in self.body_parts_static): self.status = TaskStatus.mitten_collision self._ik_goals[arm] = None if self._debug: print( "Stopping because the mitten collided with something." ) return self._stop_arm(arm=arm) # Check if the collision includes a body part. if collider_id in self.body_parts_static and collidee_id not in self.body_parts_static: if collider_id not in self.collisions: self.collisions[collider_id] = [] self.collisions[collider_id].append(collidee_id) elif collidee_id in self.body_parts_static and collider_id not in self.body_parts_static: if collidee_id not in self.collisions: self.collisions[collidee_id] = [] self.collisions[collidee_id].append(collider_id) elif r_id == "enco": coll = EnvironmentCollision(resp[i]) collider_id = coll.get_object_id() if collider_id in self.body_parts_static: self.env_collisions.append(collider_id) # Check if IK goals are done. temp_goals: Dict[Arm, Optional[_IKGoal]] = dict() # Get commands for the next frame. commands: List[dict] = [] for arm in self._ik_goals: # No IK goal on this arm. if self._ik_goals[arm] is None: temp_goals[arm] = None # This is a dummy IK goal. Let it run. elif self._ik_goals[arm].target is None: temp_goals[arm] = self._ik_goals[arm] else: # Is the arm at the target? mitten_position = _get_mitten_position(arm) # If we're not trying to pick something up, check if we are at the target position. if self._ik_goals[arm].pick_up_id is None: # If we're at the position, stop. d = np.linalg.norm(mitten_position - self._ik_goals[arm].target) if d < self._ik_goals[arm].precision: if self._debug: print( f"{arm.name} mitten is at target position {self._ik_goals[arm].target}. Stopping." ) commands.extend(self._stop_arm(arm=arm)) temp_goals[arm] = None self.status = TaskStatus.success # Keep bending the arm. else: temp_goals[arm] = self._ik_goals[arm] self._ik_goals[arm].previous_distance = d # If we're trying to pick something, check if it was picked up on the previous frame. else: if self._ik_goals[arm].pick_up_id in frame.get_held_left() or self._ik_goals[arm]. \ pick_up_id in frame.get_held_right(): if self._debug: print( f"{arm.name} mitten picked up {self._ik_goals[arm].pick_up_id}. Stopping." ) commands.extend(self._stop_arm(arm=arm)) temp_goals[arm] = None self.status = TaskStatus.success # Keep bending the arm and trying to pick up the object. else: commands.extend([{ "$type": "pick_up_proximity", "distance": 0.02, "radius": 0.05, "grip": 1000, "is_left": arm == Arm.left, "avatar_id": self.id, "object_ids": [self._ik_goals[arm].pick_up_id] }, { "$type": "pick_up", "grip": 1000, "is_left": arm == Arm.left, "object_ids": [self._ik_goals[arm].pick_up_id], "avatar_id": self.id }]) temp_goals[arm] = self._ik_goals[arm] self._ik_goals = temp_goals # Check if the arms are still moving. temp_goals: Dict[Arm, Optional[_IKGoal]] = dict() for arm in self._ik_goals: # No IK goal on this arm. if self._ik_goals[arm] is None: temp_goals[arm] = None else: # Get the past and present angles. if arm == Arm.left: angles_0 = self.frame.get_angles_left() angles_1 = frame.get_angles_left() else: angles_0 = self.frame.get_angles_right() angles_1 = frame.get_angles_right() # Try to stop any moving joints. if self._ik_goals[arm].rotations is not None and self._ik_goals[ arm].pick_up_id is not None: joint_profile = self._get_default_sticky_mitten_profile() for angle, joint_name in zip(angles_1, Avatar.ANGLE_ORDER): target_angle = self._ik_goals[arm].rotations[ joint_name] # Check if the joint stopped moving. Ignore if the joint already stopped. if target_angle > 0.01 and np.abs(angle - target_angle) < 0.01 and \ joint_name in self._ik_goals[arm].moving_joints: self._ik_goals[arm].moving_joints.remove( joint_name) j = joint_name.split("_") j_name = f"{j[0]}_{arm.name}" axis = j[1] # Set the name of the elbow to the expected profile key. if "elbow" in joint_name: profile_key = "elbow" else: profile_key = joint_name if self._debug: print( f"{joint_name} {arm.name} slowing down: {np.abs(angle - target_angle)}" ) # Stop the joint from moving any more. # Set the damper, force, and angular drag to "default" (non-moving) values. commands.extend([{ "$type": "set_joint_damper", "joint": j_name, "axis": axis, "damper": joint_profile[profile_key]["damper"], "avatar_id": self.id }, { "$type": "set_joint_force", "joint": j_name, "axis": axis, "force": joint_profile[profile_key]["force"], "avatar_id": self.id }, { "$type": "set_joint_angular_drag", "joint": j_name, "axis": axis, "angular_drag": joint_profile[profile_key]["angular_drag"], "avatar_id": self.id }]) # Is any joint still moving? moving = False for a0, a1 in zip(angles_0, angles_1): if np.abs(a0 - a1) > 0.03: moving = True break # Keep moving. if moving: temp_goals[arm] = self._ik_goals[arm] else: if self._ik_goals[arm].rotations is not None: # This is a reset arm action. if self._ik_goals[arm].target is None: mitten_position = _get_mitten_position( arm) - frame.get_position() d = np.linalg.norm( self._initial_mitten_positions[arm] - mitten_position) # The reset arm action ended with the mitten very close to the initial position. if d < self._ik_goals[arm].precision: self.status = TaskStatus.success else: self.status = TaskStatus.no_longer_bending # This is a regular action. # It ended with the arm no longer moving but having never reached the target. else: if self._debug: print( f"{arm.name} is no longer bending. Cancelling." ) self.status = TaskStatus.no_longer_bending commands.extend(self._stop_arm(arm=arm)) temp_goals[arm] = None self._ik_goals = temp_goals self.frame = frame return commands
def trial(self, d_f, s_f, b_f, d_c, s_c, b_c, collision_types): """ Collide a chair with a fridge. :param d_f: The dynamic friction of the fridge. :param s_f: The static friction of the fridge. :param b_f: The bounciness of the fridge. :param d_c: The dynamic friction of the chair. :param s_c: The static friction of the chair. :param b_c: The bounciness of the chair. :param collision_types: The types of collisions to listen for. """ print("###\n\nNew Trial\n\n###\n") fridge_id = 0 chair_id = 1 # Destroy all objects currently in the scene. init_commands = [{"$type": "destroy_all_objects"}] # Create the avatar. init_commands.extend( TDWUtils.create_avatar(position={ "x": 1, "y": 2.5, "z": 5 }, look_at=TDWUtils.VECTOR3_ZERO)) # Add the objects. # Set the masses and physic materials. # Apply a force to the chair. # Receive collision data (note that by setting "stay" to True, you will receive a LOT of data; # see "Performance Optimizations" documentation.) init_commands.extend([ self.get_add_object("fridge_large", object_id=fridge_id), self.get_add_object("chair_billiani_doll", object_id=chair_id, position={ "x": 4, "y": 0, "z": 0 }), { "$type": "set_mass", "id": fridge_id, "mass": 40 }, { "$type": "set_mass", "id": chair_id, "mass": 20 }, { "$type": "set_physic_material", "id": fridge_id, "dynamic_friction": d_f, "static_friction": s_f, "bounciness": b_f }, { "$type": "set_physic_material", "id": chair_id, "dynamic_friction": d_c, "static_friction": s_c, "bounciness": b_c }, { "$type": "apply_force_to_object", "force": { "x": -200, "y": 0, "z": 0 }, "id": chair_id }, { "$type": "send_collisions", "collision_types": collision_types, "enter": True, "exit": True, "stay": True } ]) self.communicate(init_commands) # Iterate through 500 frames. # Every frame, listen for collisions, and parse the output data. for i in range(500): resp = self.communicate([]) if len(resp) > 1: for r in resp[:-1]: r_id = OutputData.get_data_type_id(r) # There was a collision between two objects. if r_id == "coll": collision = Collision(r) print("Collision between two objects:") print("\tEvent: " + collision.get_state()) print("\tCollider: " + str(collision.get_collider_id())) print("\tCollidee: " + str(collision.get_collidee_id())) print("\tRelative velocity: " + str(collision.get_relative_velocity())) print("\tContacts:") for j in range(collision.get_num_contacts()): print( str(collision.get_contact_normal(j)) + "\t" + str(collision.get_contact_point(j))) # There was a collision between an object and the environment. elif r_id == "enco": collision = EnvironmentCollision(r) print( "Collision between an object and the environment:") print("\tEvent: " + collision.get_state()) print("\tCollider: " + str(collision.get_object_id())) print("\tContacts:") for j in range(collision.get_num_contacts()): print( str(collision.get_contact_normal(j)) + "\t" + str(collision.get_contact_point(j))) else: raise Exception(r_id)