Example #1
0
def building_test2(prj):
    """
    building which is hardcoded for testing
    """
    bldg = Building(parent=prj)

    '''Set some building parameters'''

    bldg.name = "UnitTestBuilding"
    bldg.street_name = "Unit Street 42"
    bldg.city = "46325 Testing Town"
    bldg.year_of_construction = 1988
    bldg.number_of_floors = 1
    bldg.height_of_floors = 3.5

    '''Instantiate a ThermalZone class, with building as parent and set  some
    parameters of the thermal zone'''

    tz = ThermalZone(parent=bldg)
    tz.name = "Living Room"
    tz.area = 140.0
    tz.volume = tz.area * bldg.number_of_floors * bldg.height_of_floors
    tz.infiltration_rate = 0.5

    tz.use_conditions = BoundaryConditions(tz)
    tz.use_conditions.usage = "Living"
    tz.use_conditions.cooling_time = [5, 18]
    tz.use_conditions.heating_time = [5, 18]
    tz.use_conditions.set_temp_heat = 288.15
    tz.use_conditions.set_temp_cool = 298.15
    tz.use_conditions.temp_set_back = 4.0
    tz.use_conditions.min_air_exchange = 0.0
    tz.use_conditions.min_ahu = 0.0
    tz.use_conditions.max_ahu = 2.6
    tz.use_conditions.with_ahu = True
    tz.use_conditions.persons = 3
    tz.use_conditions.machines = 3
    tz.use_conditions.lighting_power = 3
    tz.use_conditions.activity_type_machines = 2
    tz.use_conditions.ratio_conv_rad_machines = 0.5
    tz.use_conditions.profile_machines = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                                          0.2, 0.4, 0.6, 0.8, 0.8, 0.4, 0.6,
                                          0.8, 0.8, 0.4, 0.2, 0.0, 0.0, 0.0,
                                          0.0, 0.0, 0.0]
    tz.use_conditions.profile_persons = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
                                         0.2, 0.4, 0.6, 0.8, 0.8, 0.4, 0.6,
                                         0.8, 0.8, 0.4, 0.2, 0.1, 0.1, 0.1,
                                         0.1, 0.1, 0.1]
    tz.use_conditions.profile_lighting = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
                                          0.2, 0.4, 0.6, 0.8, 0.8, 0.4, 0.6,
                                          0.8, 0.8, 0.4, 0.2, 0.1, 0.1, 0.1,
                                          0.1, 0.1, 0.1]
    tz.use_conditions.use_constant_ach_rate = False
    tz.use_conditions.base_ach = 0.2
    tz.use_conditions.max_user_ach = 1.0
    tz.use_conditions.max_overheating_ach = [3.0, 2.0]
    tz.use_conditions.max_summer_ach = [1.0, 273.15 + 10, 273.15 + 17]
    tz.use_conditions.winter_reduction = [0.2, 273.15, 273.15 + 10]

    out_wall_dict = [["Outer Wall 1", [bldg.year_of_construction, 'heavy',
                                      10.0, 90.0, 0.0]],
                     ["Outer Wall 2", [bldg.year_of_construction, 'heavy',
                                      14.0, 90.0, 90.0]],
                     ["Outer Wall 3", [bldg.year_of_construction, 'heavy',
                                      10.0, 90.0, 180.0]],
                     ["Outer Wall 4", [bldg.year_of_construction, 'heavy',
                                      14.0, 90.0, 270.0]]]
    #import collections
    #out_wall_dict = collections.OrderedDict(sorted(out_wall_dict.items(), key=lambda t: t[0]))
    for value in out_wall_dict:
        '''instantiate OuterWall class'''
        out_wall = OuterWall(parent=tz)
        out_wall.name = value[0]
        out_wall.year_of_construction = value[1][0]
        out_wall.construction_type = value[1][1]
        out_wall.area = value[1][2]
        out_wall.tilt = value[1][3]
        out_wall.orientation = value[1][4]
        out_wall.building_age_group = [1994, 1998]
        out_wall.inner_radiation = 5.0
        out_wall.inner_convection = 2.7
        out_wall.outer_radiation = 5.0
        out_wall.outer_convection = 20.0

        out_wall_layer1 = Layer(out_wall)
        out_wall_layer1.id = 1
        out_wall_layer1.thickness = 5.0
        out_wall_material = Material(out_wall_layer1)
        out_wall_material.name = "material1"
        out_wall_material.density = 5.0
        out_wall_material.thermal_conduc = 4.0
        out_wall_material.heat_capac = 0.48
        out_wall_material.transmittance = 0.0

        out_wall_layer2 = Layer(out_wall)
        out_wall_layer2.id = 2
        out_wall_layer2.thickness = 2.0
        out_wall_material = Material(out_wall_layer2)
        out_wall_material.name = "material"
        out_wall_material.density = 2.0
        out_wall_material.thermal_conduc = 2.0
        out_wall_material.heat_capac = 0.84
        out_wall_material.transmittance = 0.0

    in_wall_dict = [["Inner Wall 1", [bldg.year_of_construction, 'light', 10.0]],
                    ["Inner Wall 2", [bldg.year_of_construction, 'heavy', 14.0]],
                    ["Inner Wall 3", [bldg.year_of_construction, 'light', 10.0]]]

    for value in in_wall_dict:
        '''instantiate OuterWall class'''
        in_wall = InnerWall(parent=tz)
        in_wall.name = value[0]
        in_wall.year_of_construction = value[1][0]
        in_wall.construction_type = value[1][1]
        in_wall.area = value[1][2]
        in_wall.building_age_group = [1994, 1998]
        in_wall.inner_radiation = 5.0
        in_wall.inner_convection = 2.7

        in_wall_layer1 = Layer(in_wall)
        in_wall_layer1.id = 1
        in_wall_layer1.thickness = 5.0
        in_wall_material = Material(in_wall_layer1)
        in_wall_material.name = "material1"
        in_wall_material.density = 5.0
        in_wall_material.thermal_conduc = 4.0
        in_wall_material.heat_capac = 0.48

        in_wall_layer2 = Layer(in_wall)
        in_wall_layer2.id = 2
        in_wall_layer2.thickness = 2.0
        in_wall_material = Material(in_wall_layer2)
        in_wall_material.name = "material"
        in_wall_material.density = 2.0
        in_wall_material.thermal_conduc = 2.0
        in_wall_material.heat_capac = 0.84

    win_dict = [["Window 1", [bldg.year_of_construction,
                             5.0, 90.0, 90.0]],
                ["Window 2", [bldg.year_of_construction,
                             8.0, 90.0, 180.0]],
                ["Window 3", [bldg.year_of_construction,
                             5.0, 90.0, 270.0]]]

    for value in win_dict:
        win = Window(parent=tz)
        win.construction_type = "Window"
        win.name = value[0]
        win.area = value[1][1]
        win.tilt = value[1][2]
        win.orientation = value[1][3]
        win.building_age_group = [1994, 1998]

        win.inner_convection = 1.7
        win.inner_radiation = 5.0
        win.outer_convection = 20.0
        win.outer_radiation = 5.0
        win.g_value = 0.789
        win.a_conv = 0.03
        win.shading_g_total = 1.0
        win.shading_max_irr = 180.0
        win_layer = Layer(parent=win)
        win_layer.id = 1
        win_layer.thickness = 0.024

        win_material = Material(win_layer)
        win_material.name = "GlasWindow"
        win_material.thermal_conduc = 0.067
        win_material.transmittance = 0.9

    roof = Rooftop(parent=tz)
    roof.name = "Roof"
    roof.year_of_construction = bldg.year_of_construction
    roof.construction_type = "heavy"
    roof.area = 140.0

    roof_layer1 = Layer(roof)
    roof_layer1.id = 1
    roof_layer1.thickness = 5.0
    roof_material = Material(roof_layer1)
    roof_material.name = "material1"
    roof_material.density = 5.0
    roof_material.thermal_conduc = 4.0
    roof_material.heat_capac = 0.48

    roof_layer2 = Layer(roof)
    roof_layer2.id = 2
    roof_layer2.thickness = 2.0
    roof_material = Material(roof_layer2)
    roof_material.name = "material"
    roof_material.density = 2.0
    roof_material.thermal_conduc = 2.0
    roof_material.heat_capac = 0.84

    ground = GroundFloor(parent=tz)
    ground.name = "ground"
    ground.year_of_construction = bldg.year_of_construction
    ground.construction_type = "heavy"
    ground.area = 140.0

    ground_layer1 = Layer(ground)
    ground_layer1.id = 1
    ground_layer1.thickness = 5.0
    ground_material = Material(ground_layer1)
    ground_material.name = "material1"
    ground_material.density = 5.0
    ground_material.thermal_conduc = 4.0
    ground_material.heat_capac = 0.48

    ground_layer2 = Layer(ground)
    ground_layer2.id = 2
    ground_layer2.thickness = 2.0
    ground_material = Material(ground_layer2)
    ground_material.name = "material"
    ground_material.density = 2.0
    ground_material.thermal_conduc = 2.0
    ground_material.heat_capac = 0.84

    return bldg
Example #2
0
def import_building_from_excel(project, building_name, construction_age,
                               path_to_excel, sheet_names):
    """
    Import building data from excel, convert it via the respective zoning and feed it to teasers logic classes.
    Pay attention to hard coded parts, which are marked.

    Parameters
    ----------
    project: Project()
        TEASER instance of Project
    building_name: str
        name of building to be set in the project
    construction_age: int [y]
        construction age of the building
    path_to_excel: str
        path to excel file to be imported
    sheet_names: str or list
        sheet names which shall be imported
    return data: pandas.DataFrame
        zoned DataFrame which is finally used to parametrize the teaser classes
    return project: Project()
        TEASER instance of Project filled with the imported building data
    """
    def warn_constructiontype(element):
        """Generic warning function"""
        if element.construction_type is None:
            warnings.warn(
                'In zone "%s" the %s construction "%s" could not be loaded from the TypeBuildingElements.json, '
                "an error will occur due to missing data for calculation."
                "Check for spelling and the correct combination of building age and construction type."
                "Here is the list of faulty entries:\n%s"
                "\nThese entries can easily be found checking the stated index in the produced ZonedInput.xlsx"
                % (
                    group["zone"].iloc[0],
                    element.name,
                    group["OuterWallConstruction"].iloc[0],
                    group,
                ))

    bldg = Building(parent=project)
    bldg.name = building_name
    bldg.year_of_construction = construction_age
    bldg.with_ahu = True  # HardCodedInput
    if bldg.with_ahu is True:
        bldg.central_ahu.heat_recovery = True  # HardCodedInput
        bldg.central_ahu.efficiency_recovery = 0.35  # HardCodedInput
        bldg.central_ahu.temperature_profile = 25 * [273.15 + 18
                                                     ]  # HardCodedInput
        bldg.central_ahu.min_relative_humidity_profile = 25 * [
            0
        ]  # HardCodedInput
        bldg.central_ahu.max_relative_humidity_profile = 25 * [
            1
        ]  # HardCodedInput
        bldg.central_ahu.v_flow_profile = 25 * [1]  # HardCodedInput

    # Parameters that need hard coding in teasers logic classes
    # 1. "use_set_back" needs hard coding at aixlib.py in the init; defines
    # if the in the useconditions stated
    #   heating_time with the respective set_back_temp should be applied.
    #   use_set_back = false -> all hours of the day
    #   have same set_temp_heat actual value: use_set_back = Check your current version!
    # 2. HeaterOn, CoolerOn, hHeat, lCool, etc. can be hard coded in the text
    # file
    #   "teaser / data / output / modelicatemplate / AixLib /
    #   AixLib_ThermalZoneRecord_TwoElement"
    #   actual changes: Check your current version!

    # Parameters to be set for each and every zone (#HardCodedInput)
    # -----------------------------
    out_wall_tilt = 90
    window_tilt = 90
    ground_floor_tilt = 0
    floor_tilt = 0
    ceiling_tilt = 0
    rooftop_tilt = 0
    ground_floor_orientation = -2
    floor_orientation = -2
    rooftop_orientation = -1
    ceiling_orientation = -1
    # -----------------------------

    # load_building_data from excel_to_pandas DataFrame:
    data = import_data(path_to_excel, sheet_names)

    # informative print
    usage_types = get_list_of_present_entries(data["UsageType"])
    print("List of present usage_types in the original Data set: \n%s" %
          usage_types)

    # define the zoning methodology/function
    data = zoning_example(data)

    # informative print
    usage_types = get_list_of_present_entries(data["Zone"])
    print("List of zones after the zoning is applied: \n%s" % usage_types)

    # aggregate all rooms of each zone and for each set general parameter,
    # boundary conditions
    # and parameter regarding the building physics
    zones = data.groupby(["Zone"])
    for name, zone in zones:

        # Block: Thermal zone (general parameter)
        tz = ThermalZone(parent=bldg)
        tz.name = str(name)
        tz.area = zone["NetArea[m²]"].sum()
        # room vice calculation of volume plus summing those
        tz.volume = (np.array(zone["NetArea[m²]"]) *
                     np.array(zone["HeatedRoomHeight[m]"])).sum()

        # Block: Boundary Conditions
        # load UsageOperationTime, Lighting, RoomClimate and InternalGains
        # from the "UseCondition.json"
        tz.use_conditions = UseConditions(parent=tz)
        tz.use_conditions.load_use_conditions(zone["Zone"].iloc[0],
                                              project.data)

        # Block: Building Physics
        # Grouping by orientation and construction type
        # aggregating and feeding to the teaser logic classes
        grouped = zone.groupby(
            ["OuterWallOrientation[°]", "OuterWallConstruction"])
        for name, group in grouped:
            # looping through a groupby object automatically discards the
            # groups where one of the attributes is nan
            # additionally check for strings, since the value must be of type
            # int or float
            if not isinstance(group["OuterWallOrientation[°]"].iloc[0], str):
                out_wall = OuterWall(parent=tz)
                out_wall.name = (
                    "outer_wall_" +
                    str(int(group["OuterWallOrientation[°]"].iloc[0])) + "_" +
                    str(group["OuterWallConstruction"].iloc[0]))
                out_wall.area = group["OuterWallArea[m²]"].sum()
                out_wall.tilt = out_wall_tilt
                out_wall.orientation = group["OuterWallOrientation[°]"].iloc[0]
                # load wall properties from "TypeBuildingElements.json"
                out_wall.load_type_element(
                    year=bldg.year_of_construction,
                    construction=group["OuterWallConstruction"].iloc[0],
                )
                warn_constructiontype(out_wall)
            else:
                warnings.warn(
                    'In zone "%s" the OuterWallOrientation "%s" is '
                    "neither float nor int, "
                    "hence this building element is not added.\nHere is the "
                    "list of faulty entries:\n%s"
                    "\n These entries can easily be found checking the stated "
                    "index in the produced ZonedInput.xlsx" % (
                        group["Zone"].iloc[0],
                        group["OuterWallOrientation[°]"].iloc[0],
                        group,
                    ))

        grouped = zone.groupby(["WindowOrientation[°]", "WindowConstruction"])
        for name, group in grouped:
            # looping through a groupby object automatically discards the
            # groups where one of the attributes is nan
            # additionally check for strings, since the value must be of type
            # int or float
            if not isinstance(group["OuterWallOrientation[°]"].iloc[0], str):
                window = Window(parent=tz)
                window.name = (
                    "window_" +
                    str(int(group["WindowOrientation[°]"].iloc[0])) + "_" +
                    str(group["WindowConstruction"].iloc[0]))
                window.area = group["WindowArea[m²]"].sum()
                window.tilt = window_tilt
                window.orientation = group["WindowOrientation[°]"].iloc[0]
                # load wall properties from "TypeBuildingElements.json"
                window.load_type_element(
                    year=bldg.year_of_construction,
                    construction=group["WindowConstruction"].iloc[0],
                )
                warn_constructiontype(window)
            else:
                warnings.warn(
                    'In zone "%s" the window orientation "%s" is neither '
                    "float nor int, "
                    "hence this building element is not added. Here is the "
                    "list of faulty entries:\n%s"
                    "\nThese entries can easily be found checking the stated "
                    "index in the produced ZonedInput.xlsx" % (
                        group["Zone"].iloc[0],
                        group["WindowOrientation[°]"].iloc[0],
                        group,
                    ))

        grouped = zone.groupby(["IsGroundFloor", "FloorConstruction"])
        for name, group in grouped:
            if group["NetArea[m²]"].sum() != 0:  # to avoid devision by 0
                if group["IsGroundFloor"].iloc[0] == 1:
                    ground_floor = GroundFloor(parent=tz)
                    ground_floor.name = "ground_floor" + str(
                        group["FloorConstruction"].iloc[0])
                    ground_floor.area = group["NetArea[m²]"].sum()
                    ground_floor.tilt = ground_floor_tilt
                    ground_floor.orientation = ground_floor_orientation
                    # load wall properties from "TypeBuildingElements.json"
                    ground_floor.load_type_element(
                        year=bldg.year_of_construction,
                        construction=group["FloorConstruction"].iloc[0],
                    )
                    warn_constructiontype(ground_floor)
                elif group["IsGroundFloor"].iloc[0] == 0:
                    floor = Floor(parent=tz)
                    floor.name = "floor" + str(
                        group["FloorConstruction"].iloc[0])
                    floor.area = group["NetArea[m²]"].sum() / 2  # only half of
                    # the floor belongs to this story
                    floor.tilt = floor_tilt
                    floor.orientation = floor_orientation
                    # load wall properties from "TypeBuildingElements.json"
                    floor.load_type_element(
                        year=bldg.year_of_construction,
                        construction=group["FloorConstruction"].iloc[0],
                    )
                    warn_constructiontype(floor)
                else:
                    warnings.warn(
                        "Values for IsGroundFloor have to be either 0 or 1, "
                        "for no or yes respectively")
            else:
                warnings.warn(
                    'zone "%s" with IsGroundFloor "%s" and construction '
                    'type "%s" '
                    "has no floor nor groundfloor, since the area equals 0." %
                    (
                        group["Zone"].iloc[0],
                        group["IsGroundFloor"].iloc[0],
                        group["FloorConstruction"].iloc[0],
                    ))

        grouped = zone.groupby(["IsRooftop", "CeilingConstruction"])
        for name, group in grouped:
            if group["NetArea[m²]"].sum() != 0:  # to avoid devision by 0
                if group["IsRooftop"].iloc[0] == 1:
                    rooftop = Rooftop(parent=tz)
                    rooftop.name = "rooftop" + str(
                        group["CeilingConstruction"].iloc[0])
                    rooftop.area = group["NetArea[m²]"].sum(
                    )  # sum up area of respective
                    # rooftop parts
                    rooftop.tilt = rooftop_tilt
                    rooftop.orientation = rooftop_orientation
                    # load wall properties from "TypeBuildingElements.json"
                    rooftop.load_type_element(
                        year=bldg.year_of_construction,
                        construction=group["CeilingConstruction"].iloc[0],
                    )
                    warn_constructiontype(rooftop)
                elif group["IsRooftop"].iloc[0] == 0:
                    ceiling = Ceiling(parent=tz)
                    ceiling.name = "ceiling" + str(
                        group["CeilingConstruction"].iloc[0])
                    ceiling.area = group["NetArea[m²]"].sum() / 2  # only half
                    # of the ceiling belongs to a story,
                    # the other half to the above
                    ceiling.tilt = ceiling_tilt
                    ceiling.orientation = ceiling_orientation
                    # load wall properties from "TypeBuildingElements.json"
                    ceiling.load_type_element(
                        year=bldg.year_of_construction,
                        construction=group["CeilingConstruction"].iloc[0],
                    )
                    warn_constructiontype(ceiling)
                else:
                    warnings.warn(
                        "Values for IsRooftop have to be either 0 or 1, "
                        "for no or yes respectively")
            else:
                warnings.warn(
                    'zone "%s" with IsRooftop "%s" and construction type '
                    '"%s" '
                    "has no ceiling nor rooftop, since the area equals 0." % (
                        group["Zone"].iloc[0],
                        group["IsRooftop"].iloc[0],
                        group["CeilingConstruction"].iloc[0],
                    ))

        grouped = zone.groupby(["InnerWallConstruction"])
        for name, group in grouped:
            if group["InnerWallArea[m²]"].sum() != 0:  # to avoid devision by 0
                in_wall = InnerWall(parent=tz)
                in_wall.name = "inner_wall" + str(
                    group["InnerWallConstruction"].iloc[0])
                in_wall.area = group["InnerWallArea[m²]"].sum() / 2  # only
                # half of the wall belongs to each room,
                # the other half to the adjacent
                # load wall properties from "TypeBuildingElements.json"
                in_wall.load_type_element(
                    year=bldg.year_of_construction,
                    construction=group["InnerWallConstruction"].iloc[0],
                )
                warn_constructiontype(in_wall)
            else:
                warnings.warn(
                    'zone "%s" with inner wall construction "%s" has no '
                    "inner walls, since area = 0." %
                    (group["Zone"].iloc[0], group["InnerWallConstructio"
                                                  "n"].iloc[0]))

        # Block: AHU and infiltration #Attention hard coding
        # set the supply volume flow of the AHU per zone
        ahu_dict = {
            "Bedroom": [15.778, 15.778],
            "Corridorsinthegeneralcarearea": [5.2941, 5.2941],
            "Examinationortreatmentroom": [15.743, 15.743],
            "MeetingConferenceseminar": [16.036, 16.036],
            "Stocktechnicalequipmentarchives": [20.484, 20.484],
            "WCandsanitaryroomsinnonresidentialbuildings": [27.692, 27.692],
        }
        _i = 0
        for key in ahu_dict:
            if tz.name == key:
                tz.use_conditions.min_ahu = ahu_dict[key][0]
                tz.use_conditions.max_ahu = ahu_dict[key][1]
                _i = 1
        if _i == 0:
            warnings.warn(
                "The zone %s could not be found in your ahu_dict. Hence, "
                "no AHU flow is defined. The default value is "
                "0 (min_ahu = 0; max_ahu=0" % tz.name)

    return project, data
Example #3
0
def building_test2(prj):
    """
    building which is hardcoded for testing
    """
    bldg = Building(parent = prj)

    '''Set some building parameters'''

    bldg.name = "UnitTestBuilding"
    bldg.street_name = "Unit Street 42"
    bldg.city = "46325 Testing Town"
    bldg.year_of_construction = 1988
    bldg.number_of_floors = 1
    bldg.height_of_floors = 3.5

    '''Instantiate a ThermalZone class, with building as parent and set  some
    parameters of the thermal zone'''

    tz = ThermalZone(parent = bldg)
    tz.name = "Living Room"
    tz.area = 140.0
    tz.volume = tz.area * bldg.number_of_floors * bldg.height_of_floors
    tz.infiltration_rate = 0.5

    tz.use_conditions = BoundaryConditions(tz)
    tz.use_conditions.usage = "Living"
    tz.use_conditions.cooling_time = [5,18]
    tz.use_conditions.heating_time = [5,18]
    tz.use_conditions.set_temp_heat = 288.15
    tz.use_conditions.set_temp_cool = 298.15
    tz.use_conditions.temp_set_back= 4.0
    tz.use_conditions.min_air_exchange= 0.0
    tz.use_conditions.min_ahu= 0.0
    tz.use_conditions.max_ahu = 2.6
    tz.use_conditions.with_ahu = True
    tz.use_conditions.persons = 3
    tz.use_conditions.machines = 3
    tz.use_conditions.lighting_power = 3
    tz.use_conditions.activity_type_machines = 2
    tz.use_conditions.ratio_conv_rad_machines = 0.5
    tz.use_conditions.profile_machines = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                                          0.2, 0.4, 0.6, 0.8, 0.8, 0.4, 0.6,
                                          0.8, 0.8, 0.4, 0.2, 0.0, 0.0, 0.0,
                                          0.0, 0.0, 0.0]
    tz.use_conditions.profile_persons = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
                                         0.2, 0.4, 0.6, 0.8, 0.8, 0.4, 0.6,
                                         0.8, 0.8, 0.4, 0.2, 0.1, 0.1, 0.1,
                                         0.1, 0.1, 0.1]
    tz.use_conditions.profile_lighting = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
                                          0.2, 0.4, 0.6, 0.8, 0.8, 0.4, 0.6,
                                          0.8, 0.8, 0.4, 0.2, 0.1, 0.1, 0.1,
                                          0.1, 0.1, 0.1]
    tz.use_conditions.use_constant_ach_rate = False
    tz.use_conditions.base_ach = 0.2
    tz.use_conditions.max_user_ach = 1.0
    tz.use_conditions.max_overheating_ach = [3.0, 2.0]
    tz.use_conditions.max_summer_ach = [1.0, 273.15 + 10, 273.15 + 17]
    tz.use_conditions.winter_reduction = [0.2, 273.15, 273.15 + 10]

    out_wall_dict = [["Outer Wall 1", [bldg.year_of_construction, 'heavy',
                                      10.0, 90.0, 0.0]],
                     ["Outer Wall 2", [bldg.year_of_construction, 'heavy',
                                      14.0, 90.0, 90.0]],
                     ["Outer Wall 3", [bldg.year_of_construction, 'heavy',
                                      10.0, 90.0, 180.0]],
                     ["Outer Wall 4", [bldg.year_of_construction, 'heavy',
                                      14.0, 90.0, 270.0]]]
    #import collections
    #out_wall_dict = collections.OrderedDict(sorted(out_wall_dict.items(), key=lambda t: t[0]))
    for value in out_wall_dict:
        '''instantiate OuterWall class'''
        out_wall = OuterWall(parent = tz)
        out_wall.name = value[0]
        out_wall.year_of_construction = value[1][0]
        out_wall.construction_type = value[1][1]
        out_wall.area = value[1][2]
        out_wall.tilt = value[1][3]
        out_wall.orientation = value[1][4]
        out_wall.building_age_group = [1994, 1998]
        out_wall.inner_radiation = 5.0
        out_wall.inner_convection = 2.7
        out_wall.outer_radiation = 5.0
        out_wall.outer_convection = 20.0

        out_wall_layer1 = Layer(out_wall)
        out_wall_layer1.id = 1
        out_wall_layer1.thickness = 5.0
        out_wall_material = Material(out_wall_layer1)
        out_wall_material.name = "material1"
        out_wall_material.density = 5.0
        out_wall_material.thermal_conduc = 4.0
        out_wall_material.heat_capac = 0.48
        out_wall_material.transmittance = 0.0

        out_wall_layer2 = Layer(out_wall)
        out_wall_layer2.id = 2
        out_wall_layer2.thickness = 2.0
        out_wall_material = Material(out_wall_layer2)
        out_wall_material.name = "material"
        out_wall_material.density = 2.0
        out_wall_material.thermal_conduc = 2.0
        out_wall_material.heat_capac = 0.84
        out_wall_material.transmittance = 0.0

    in_wall_dict = [["Inner Wall 1", [bldg.year_of_construction, 'light', 10.0]],
                    ["Inner Wall 2", [bldg.year_of_construction, 'heavy', 14.0]],
                    ["Inner Wall 3", [bldg.year_of_construction, 'light', 10.0]]]

    for value in in_wall_dict:
        '''instantiate OuterWall class'''
        in_wall = InnerWall(parent = tz)
        in_wall.name = value[0]
        in_wall.year_of_construction = value[1][0]
        in_wall.construction_type = value[1][1]
        in_wall.area = value[1][2]
        in_wall.building_age_group = [1994, 1998]
        in_wall.inner_radiation = 5.0
        in_wall.inner_convection = 2.7

        in_wall_layer1 = Layer(in_wall)
        in_wall_layer1.id = 1
        in_wall_layer1.thickness = 5.0
        in_wall_material = Material(in_wall_layer1)
        in_wall_material.name = "material1"
        in_wall_material.density = 5.0
        in_wall_material.thermal_conduc = 4.0
        in_wall_material.heat_capac = 0.48

        in_wall_layer2 = Layer(in_wall)
        in_wall_layer2.id = 2
        in_wall_layer2.thickness = 2.0
        in_wall_material = Material(in_wall_layer2)
        in_wall_material.name = "material"
        in_wall_material.density = 2.0
        in_wall_material.thermal_conduc = 2.0
        in_wall_material.heat_capac = 0.84

    win_dict = [["Window 1", [bldg.year_of_construction,
                             5.0, 90.0, 90.0]],
                ["Window 2", [bldg.year_of_construction,
                             8.0, 90.0, 180.0]],
                ["Window 3", [bldg.year_of_construction,
                             5.0, 90.0, 270.0]]]

    for value in win_dict:
        win = Window(parent = tz)
        win.construction_type = "Window"
        win.name = value[0]
        win.area = value[1][1]
        win.tilt = value[1][2]
        win.orientation = value[1][3]
        win.building_age_group = [1994, 1998]

        win.inner_convection = 1.7
        win.inner_radiation = 5.0
        win.outer_convection = 20.0
        win.outer_radiation = 5.0
        win.g_value = 0.789
        win.a_conv = 0.03
        win.shading_g_total = 1.0
        win.shading_max_irr = 180.0
        win_layer = Layer(parent = win)
        win_layer.id = 1
        win_layer.thickness = 0.024

        win_material = Material(win_layer)
        win_material.name = "GlasWindow"
        win_material.thermal_conduc = 0.067
        win_material.transmittance = 0.9

    roof = Rooftop(parent = tz)
    roof.name = "Roof"
    roof.year_of_construction = bldg.year_of_construction
    roof.construction_type = "heavy"
    roof.area = 140.0

    roof_layer1 = Layer(roof)
    roof_layer1.id = 1
    roof_layer1.thickness = 5.0
    roof_material = Material(roof_layer1)
    roof_material.name = "material1"
    roof_material.density = 5.0
    roof_material.thermal_conduc = 4.0
    roof_material.heat_capac = 0.48

    roof_layer2 = Layer(roof)
    roof_layer2.id = 2
    roof_layer2.thickness = 2.0
    roof_material = Material(roof_layer2)
    roof_material.name = "material"
    roof_material.density = 2.0
    roof_material.thermal_conduc = 2.0
    roof_material.heat_capac = 0.84

    ground = GroundFloor(parent = tz)
    ground.name = "ground"
    ground.year_of_construction = bldg.year_of_construction
    ground.construction_type = "heavy"
    ground.area = 140.0

    ground_layer1 = Layer(ground)
    ground_layer1.id = 1
    ground_layer1.thickness = 5.0
    ground_material = Material(ground_layer1)
    ground_material.name = "material1"
    ground_material.density = 5.0
    ground_material.thermal_conduc = 4.0
    ground_material.heat_capac = 0.48

    ground_layer2 = Layer(ground)
    ground_layer2.id = 2
    ground_layer2.thickness = 2.0
    ground_material = Material(ground_layer2)
    ground_material.name = "material"
    ground_material.density = 2.0
    ground_material.thermal_conduc = 2.0
    ground_material.heat_capac = 0.84

    return bldg
Example #4
0
def _load_building(prj, pyxb_bld, type, project_bind):
    if type == "Building":
        bldg = Building(prj)

    elif type == "Office":
        bldg = Office(prj)

    elif type == "Institute":

        bldg = Institute(prj)

    elif type == "Institute4":
        bldg = Institute4(prj)

    elif type == "Institute8":
        bldg = Institute8(prj)

    elif type == "Residential":
        bldg = SingleFamilyDwelling(prj)

    bldg.name = pyxb_bld.name
    bldg.street_name = pyxb_bld.street_name
    bldg.city = pyxb_bld.city
    bldg.type_of_building = pyxb_bld.type_of_building
    bldg.year_of_construction = pyxb_bld.year_of_construction
    bldg.year_of_retrofit = pyxb_bld.year_of_retrofit
    bldg.number_of_floors = pyxb_bld.number_of_floors
    bldg.height_of_floors = pyxb_bld.height_of_floors

    if not pyxb_bld.ThermalZone:
        bldg.net_leased_area = pyxb_bld.net_leased_area

    if pyxb_bld.CentralAHU:
        pyxb_ahu = pyxb_bld.CentralAHU
        bldg.central_ahu = BuildingAHU(bldg)

        bldg.central_ahu.heating = pyxb_ahu.heating
        bldg.central_ahu.cooling = pyxb_ahu.cooling
        bldg.central_ahu.dehumidification = pyxb_ahu.dehumidification
        bldg.central_ahu.humidification = pyxb_ahu.humidification
        bldg.central_ahu.heat_recovery = pyxb_ahu.heat_recovery
        bldg.central_ahu.by_pass_dehumidification = \
            pyxb_ahu.by_pass_dehumidification
        bldg.central_ahu.efficiency_recovery = pyxb_ahu.efficiency_recovery

        try:
            if float(project_bind.version) >= 0.5:
                bldg.central_ahu.efficiency_recovery_false = \
                    pyxb_ahu.efficiency_recovery_false
            else:
                bldg.central_ahu.efficiency_recovery_false = \
                    pyxb_ahu.efficiency_revocery_false
        except AttributeError:
            bldg.central_ahu.efficiency_recovery_false = \
                pyxb_ahu.efficiency_revocery_false

        bldg.central_ahu.profile_min_relative_humidity = \
            pyxb_ahu.profile_min_relative_humidity
        bldg.central_ahu.profile_max_relative_humidity = \
            pyxb_ahu.profile_max_relative_humidity
        bldg.central_ahu.profile_v_flow = \
            pyxb_ahu.profile_v_flow
        bldg.central_ahu.profile_temperature = \
            pyxb_ahu.profile_temperature

    for pyxb_zone in pyxb_bld.ThermalZone:

        zone = ThermalZone(bldg)

        zone.name = pyxb_zone.name
        zone.area = pyxb_zone.area
        zone.volume = pyxb_zone.volume
        zone.infiltration_rate = pyxb_zone.infiltration_rate

        zone.use_conditions = BoundaryConditions(zone)

        pyxb_use = pyxb_zone.UseCondition.BoundaryConditions

        zone.use_conditions.typical_length = pyxb_zone.typical_length
        zone.use_conditions.typical_width = pyxb_zone.typical_width

        zone.use_conditions.usage = \
            pyxb_use.usage

        zone.use_conditions.usage_time = \
            pyxb_use.UsageOperationTime.usage_time
        zone.use_conditions.daily_usage_hours = \
            pyxb_use.UsageOperationTime.daily_usage_hours
        zone.use_conditions.yearly_usage_days = \
            pyxb_use.UsageOperationTime.yearly_usage_days
        zone.use_conditions.yearly_usage_hours_day = \
            pyxb_use.UsageOperationTime.yearly_usage_hours_day
        zone.use_conditions.yearly_usage_hours_night = \
            pyxb_use.UsageOperationTime.yearly_usage_hours_night
        zone.use_conditions.daily_operation_ahu_cooling = \
            pyxb_use.UsageOperationTime.daily_operation_ahu_cooling
        zone.use_conditions.yearly_heating_days = \
            pyxb_use.UsageOperationTime.yearly_heating_days
        zone.use_conditions.yearly_ahu_days = \
            pyxb_use.UsageOperationTime.yearly_ahu_days
        zone.use_conditions.yearly_cooling_days = \
            pyxb_use.UsageOperationTime.yearly_cooling_days
        zone.use_conditions.daily_operation_heating = \
            pyxb_use.UsageOperationTime.daily_operation_heating

        try:
            if float(project_bind.version) >= 0.4:
                zone.use_conditions.maintained_illuminance = \
                    pyxb_use.Lighting.maintained_illuminance
            else:
                zone.use_conditions.maintained_illuminance = \
                    pyxb_use.Lighting.maintained_illuminace
        except AttributeError:
            zone.use_conditions.maintained_illuminance = \
                pyxb_use.Lighting.maintained_illuminace

        zone.use_conditions.usage_level_height = \
            pyxb_use.Lighting.usage_level_height
        zone.use_conditions.red_factor_visual = \
            pyxb_use.Lighting.red_factor_visual
        zone.use_conditions.rel_absence = \
            pyxb_use.Lighting.rel_absence
        zone.use_conditions.room_index = \
            pyxb_use.Lighting.room_index
        zone.use_conditions.part_load_factor_lighting = \
            pyxb_use.Lighting.part_load_factor_lighting
        zone.use_conditions.ratio_conv_rad_lighting = \
            pyxb_use.Lighting.ratio_conv_rad_lighting

        zone.use_conditions.set_temp_heat = \
            pyxb_use.RoomClimate.set_temp_heat
        zone.use_conditions.set_temp_cool = \
            pyxb_use.RoomClimate.set_temp_cool
        zone.use_conditions.temp_set_back = \
            pyxb_use.RoomClimate.temp_set_back
        zone.use_conditions.min_temp_heat = \
            pyxb_use.RoomClimate.min_temp_heat
        zone.use_conditions.max_temp_cool = \
            pyxb_use.RoomClimate.max_temp_cool
        zone.use_conditions.rel_humidity = \
            pyxb_use.RoomClimate.rel_humidity
        zone.use_conditions.cooling_time = \
            pyxb_use.RoomClimate.cooling_time
        zone.use_conditions.heating_time = \
            pyxb_use.RoomClimate.heating_time
        zone.use_conditions.min_air_exchange = \
            pyxb_use.RoomClimate.min_air_exchange
        zone.use_conditions.rel_absence_ahu = \
            pyxb_use.RoomClimate.rel_absence_ahu
        zone.use_conditions.part_load_factor_ahu = \
            pyxb_use.RoomClimate.part_load_factor_ahu

        zone.use_conditions.persons = \
            pyxb_use.InternalGains.persons
        zone.use_conditions.profile_persons = \
            pyxb_use.InternalGains.profile_persons
        zone.use_conditions.machines = \
            pyxb_use.InternalGains.machines
        zone.use_conditions.profile_machines = \
            pyxb_use.InternalGains.profile_machines
        zone.use_conditions.lighting_power = \
            pyxb_use.InternalGains.lighting_power
        zone.use_conditions.profile_lighting = \
            pyxb_use.InternalGains.profile_lighting

        zone.use_conditions.min_ahu = \
            pyxb_use.AHU.min_ahu
        zone.use_conditions.max_ahu = \
            pyxb_use.AHU.max_ahu
        zone.use_conditions.with_ahu = \
            pyxb_use.AHU.with_ahu
        zone.use_constant_ach_rate = \
            pyxb_use.AHU.use_constant_ach_rate
        zone.base_ach = \
            pyxb_use.AHU.base_ach
        zone.max_user_ach = \
            pyxb_use.AHU.max_user_ach
        zone.max_overheating_ach = \
            pyxb_use.AHU.max_overheating_ach
        zone.max_summer_ach = \
            pyxb_use.AHU.max_summer_ach
        zone.winter_reduction = \
            pyxb_use.AHU.winter_reduction

        for pyxb_wall in pyxb_zone.OuterWall:
            out_wall = OuterWall(zone)

            set_basic_data_teaser(pyxb_wall, out_wall)
            set_layer_data_teaser(pyxb_wall, out_wall)

        try:
            if float(project_bind.version) >= 0.6:
                for pyxb_wall in pyxb_zone.Door:
                    out_wall = Door(zone)

                    set_basic_data_teaser(pyxb_wall, out_wall)
                    set_layer_data_teaser(pyxb_wall, out_wall)

        except AttributeError:
            pass

        for pyxb_wall in pyxb_zone.Rooftop:
            roof = Rooftop(zone)

            set_basic_data_teaser(pyxb_wall, roof)
            set_layer_data_teaser(pyxb_wall, roof)

            # zone.outer_walls.append(roof)

        for pyxb_wall in pyxb_zone.GroundFloor:
            gr_floor = GroundFloor(zone)

            set_basic_data_teaser(pyxb_wall, gr_floor)
            set_layer_data_teaser(pyxb_wall, gr_floor)

            # zone.outer_walls.append(gr_floor)

        for pyxb_wall in pyxb_zone.InnerWall:
            in_wall = InnerWall(zone)

            set_basic_data_teaser(pyxb_wall, in_wall)
            set_layer_data_teaser(pyxb_wall, in_wall)

            # zone.inner_walls.append(in_wall)

        for pyxb_wall in pyxb_zone.Ceiling:
            ceiling = Ceiling(zone)

            set_basic_data_teaser(pyxb_wall, ceiling)
            set_layer_data_teaser(pyxb_wall, ceiling)

            # zone.inner_walls.append(ceiling)

        for pyxb_wall in pyxb_zone.Floor:
            floor = Floor(zone)

            set_basic_data_teaser(pyxb_wall, floor)
            set_layer_data_teaser(pyxb_wall, floor)

            # zone.inner_walls.append(floor)

        for pyxb_win in pyxb_zone.Window:
            win = Window(zone)

            set_basic_data_teaser(pyxb_win, win)
            set_layer_data_teaser(pyxb_win, win)
Example #5
0
def example_create_building():
    '''
    Instantiate a Project class (with load_data set to true), instantiate a
    Building class, with the project as a parent. This automatically adds the
    specific building and all its future changes to the project.
    '''
    prj = Project(load_data=True)
    bldg = Building(parent=prj)

    '''Set some building parameters'''

    bldg.name = "SuperExampleBuilding"
    bldg.street_name = "Awesome Avenue 42"
    bldg.city = "46325 Fantastic Town"
    bldg.year_of_construction = 1988
    bldg.number_of_floors = 1
    bldg.height_of_floors = 3.5

    '''Instantiate a ThermalZone class, with building as parent and set  some
    parameters of the thermal zone'''

    tz = ThermalZone(parent=bldg)
    tz.name = "Living Room"
    tz.area = 140.0
    tz.volume = tz.area * bldg.number_of_floors * bldg.height_of_floors
    tz.infiltration_rate = 0.5

    '''Instantiate UseConditions18599 class with thermal zone as parent,
    and load the use conditions for the usage 'Living' '''

    tz.use_conditions = BoundaryConditions(parent=tz)
    tz.use_conditions.load_use_conditions("Living")

    '''Define two elements representing a pitched roof and define Layers and
    Materials explicitly'''

    roof_south = Rooftop(parent=tz)
    roof_south.name = "Roof_South"

    roof_north = Rooftop(parent=tz)
    roof_north.name = "Roof_North"

    '''Set area, orientation and tilt of South Roof'''
    roof_south.area = 75.0
    roof_south.orientation = 180.0
    roof_south.tilt = 55.0

    '''Set coefficient of heat transfer'''
    roof_south.inner_convection = 1.7
    roof_south.outer_convection = 5.0
    roof_south.inner_radiation = 20.0
    roof_south.outer_radiation = 5.0

    '''Set layer and material'''
    layer_1s = Layer(parent=roof_south, id=0) # id indicates the order of
                                              # layer from inside to outside
    layer_1s.thickness = 0.15

    material_1_2 = Material(layer_1s)
    material_1_2.name = "Insulation"
    material_1_2.density = 120.0
    material_1_2.heat_capac = 0.04
    material_1_2.thermal_conduc = 1.0

    layer_2s = Layer(parent=roof_south, id=1)
    layer_2s.thickness = 0.15

    material_1_1 = Material(layer_2s)
    material_1_1.name = "Tile"
    material_1_1.density = 1400.0
    material_1_1.heat_capac = 0.6
    material_1_1.thermal_conduc = 2.5

    '''Set area, orientation and tilt of North Roof'''
    roof_north.area = 75.0
    roof_north.orientation = 0.0
    roof_north.tilt = 55.0

    '''Set coefficient of heat transfer'''
    roof_north.inner_convection = 1.7
    roof_north.outer_convection = 5.0
    roof_north.inner_radiation = 20.0
    roof_north.outer_radiation = 5.0

    '''Set layer and material'''
    layer_1n = Layer(parent=roof_north, id=0)
    layer_1n.thickness = 0.15

    material_1_2 = Material(layer_1n)
    material_1_2.name = "Insulation"
    material_1_2.density = 120.0
    material_1_2.heat_capac = 0.04
    material_1_2.thermal_conduc = 1.0

    layer_2n = Layer(parent=roof_north, id=1)
    layer_2n.thickness = 0.15
    layer_2n.position = 1

    material_1_1 = Material(layer_2n)
    material_1_1.name = "Tile"
    material_1_1.density = 1400.0
    material_1_1.heat_capac = 0.6
    material_1_1.thermal_conduc = 2.5

    '''We save information of the Outer and Inner walls as well as Windows
    in dicts, the key is the name, while the value is a list (if applicable)
    [year of construciton,
     construction type,
     area,
     tilt,
     orientation]
     '''

    out_wall_dict = {"Outer Wall 1": [bldg.year_of_construction, 'heavy',
                                      10.0, 90.0, 0.0],
                     "Outer Wall 2": [bldg.year_of_construction, 'heavy',
                                      14.0, 90.0, 90.0],
                     "Outer Wall 3": [bldg.year_of_construction, 'heavy',
                                      10.0, 90.0, 180.0],
                     "Outer Wall 4": [bldg.year_of_construction, 'heavy',
                                      14.0, 90.0, 270.0]}

    in_wall_dict = {"Inner Wall 1": [bldg.year_of_construction, 'light', 10.0],
                    "Inner Wall 2": [bldg.year_of_construction, 'heavy', 14.0],
                    "Inner Wall 3": [bldg.year_of_construction, 'light', 10.0]}

    win_dict = {"Window 1": [bldg.year_of_construction,
                             5.0, 90.0, 90.0],
                "Window 2": [bldg.year_of_construction,
                             8.0, 90.0, 180.0],
                "Window 3": [bldg.year_of_construction,
                             5.0, 90.0, 270.0]}

    for key, value in out_wall_dict.items():
        '''instantiate OuterWall class'''
        out_wall = OuterWall(parent = tz)
        out_wall.name = key
        '''load typical construction, based on year of construction and
        construction type'''
        out_wall.load_type_element(year=value[0],
                                   construction=value[1])
        out_wall.area = value[2]
        out_wall.tilt = value[3]
        out_wall.orientation = value[4]

    for key, value in in_wall_dict.items():
        '''instantiate InnerWall class'''
        in_wall = InnerWall(parent = tz)
        in_wall.name = key
        '''load typical construction, based on year of construction and
        construction type'''
        in_wall.load_type_element(year=value[0],
                                  construction=value[1])
        in_wall.area = value[2]

    for key, value in win_dict.items():
        '''instantiate Window class'''
        win = Window(parent = tz)
        win.name = key
        win.area = value[1]
        win.tilt = value[2]
        win.orientation = value[3]

        '''
        We know the exact properties of the window, thus we set them instead
        of loading a typical construction
        '''
        win.inner_convection = 1.7
        win.inner_radiation = 5.0
        win.outer_convection = 20.0
        win.outer_radiation = 5.0
        win.g_value = 0.789
        win.a_conv = 0.03
        win.shading_g_total = 1.0
        win.shading_max_irr = 180.0
        '''Instantiate a Layer class, with window as parent, set attributes'''
        win_layer = Layer(parent = win)
        win_layer.id = 1
        win_layer.thickness = 0.024
        '''Instantiate a Material class, with window layer as parent,
        set attributes'''
        win_material = Material(win_layer)
        win_material.name = "GlasWindow"
        win_material.thermal_conduc = 0.067
        win_material.transmittance = 0.9


    '''For a GroundFloor we are using the load_type_element function,
    which needs the year of construction and the construction type ('heavy'
    or 'light')
    '''
    ground = GroundFloor(parent=tz)
    ground.name = "Ground floor"
    ground.load_type_element(bldg.year_of_construction, 'heavy')
    ground.area = 140.0

    '''
    We calculate the RC Values according to AixLib procedure
    '''

    prj.used_library_calc = 'AixLib'
    prj.number_of_elements_calc = 2
    prj.merge_windows_calc = False

    prj.calc_all_buildings()
    '''
    Export the Modelica Record
    '''
    prj.export_aixlib(building_model="MultizoneEquipped",
                      zone_model="ThermalZoneEquipped",
                      corG=True,
                      internal_id=None,
                      path=None)

    '''Or we use Annex60 method with for elements'''
    #prj.calc_all_buildings(number_of_elements=4,
    #                       merge_windows=False,
    #                       used_library='Annex60')
    #prj.export_annex()

    '''
    Save new TEASER XML and cityGML
    '''
    prj.save_project("ExampleProject")
    prj.save_citygml("ExampleCityGML")
Example #6
0
def example_create_building():
    """"This function demonstrates generating a building adding all
    information separately"""

    # First step: Import the TEASER API (called Project) into your Python module

    from teaser.project import Project

    # To use the API instantiate the Project class and rename the Project. The
    # parameter load_data=True indicates that we load data into our
    # Project (e.g. for Material properties and typical wall constructions.
    # This can take a few seconds, depending on the size of the used data base.

    prj = Project(load_data=True)
    prj.name = "BuildingExample"

    # Instantiate a Building class and set the Project API as a parent to
    # this building. This will automatically add this building and all its
    # future changes to the project. This is helpful as we can use the data
    # base and API functions (like explained in e2 - e5). We also set some
    # building parameters. Be careful: Dymola does not like whitespaces in
    # names and filenames, thus we will delete them anyway in TEASER.

    from teaser.logic.buildingobjects.building import Building

    bldg = Building(parent=prj)
    bldg.name = "SuperExampleBuilding"
    bldg.street_name = "AwesomeAvenue42"
    bldg.city = "46325FantasticTown"
    bldg.year_of_construction = 2015
    bldg.number_of_floors = 1
    bldg.height_of_floors = 3.5

    # Instantiate a ThermalZone class and set the Building as a parent of it.
    # Set some parameters of the thermal zone. Be careful: Dymola does not
    # like whitespaces in  names and filenames, thus we will delete them
    # anyway in TEASER.

    from teaser.logic.buildingobjects.thermalzone import ThermalZone

    tz = ThermalZone(parent=bldg)
    tz.name = "LivingRoom"
    tz.area = 140.0
    tz.volume = tz.area * bldg.number_of_floors * bldg.height_of_floors
    tz.infiltration_rate = 0.5

    # Instantiate BoundaryConditions and load conditions for `Living`.

    from teaser.logic.buildingobjects.boundaryconditions.boundaryconditions \
        import BoundaryConditions

    tz.use_conditions = BoundaryConditions(parent=tz)
    tz.use_conditions.load_use_conditions("Living", prj.data)

    # Define two building elements reflecting a pitched roof (south = 180° and
    # north = 0°). Setting the the ThermalZone as a parent will automatically
    # assign this element to the thermal zone. We also set names, tilt and
    # coefficients for heat transfer on the inner and outer side of the
    # roofs. If the building has a flat roof, please use -1 as
    # orientation. Please read the docs to get more information on these
    # parameters.

    from teaser.logic.buildingobjects.buildingphysics.rooftop import Rooftop

    roof_south = Rooftop(parent=tz)
    roof_south.name = "Roof_South"
    roof_south.area = 75.0
    roof_south.orientation = 180.0
    roof_south.tilt = 55.0
    roof_south.inner_convection = 1.7
    roof_south.outer_convection = 20.0
    roof_south.inner_radiation = 5.0
    roof_south.outer_radiation = 5.0

    roof_north = Rooftop(parent=tz)
    roof_north.name = "Roof_North"
    roof_north.area = 75.0
    roof_north.orientation = 0.0
    roof_north.tilt = 55.0
    roof_north.inner_convection = 1.7
    roof_north.outer_convection = 20.0
    roof_north.inner_radiation = 5.0
    roof_north.outer_radiation = 5.0

    # To define the wall constructions we need to instantiate Layer and
    # Material objects and set attributes. id indicates the order of wall
    # construction from inside to outside (so 0 is on the inner surface). You
    # need to set this value!

    from teaser.logic.buildingobjects.buildingphysics.layer import Layer

    # First layer south

    layer_s1 = Layer(parent=roof_south, id=0)
    layer_s1.thickness = 0.3

    from teaser.logic.buildingobjects.buildingphysics.material import Material

    material_s1 = Material(layer_s1)
    material_s1.name = "Insulation"
    material_s1.density = 120.0
    material_s1.heat_capac = 0.04
    material_s1.thermal_conduc = 1.0

    # Second layer south

    layer_s2 = Layer(parent=roof_south, id=1)
    layer_s2.thickness = 0.15

    material_s2 = Material(layer_s2)
    material_s2.name = "Tile"
    material_s2.density = 1400.0
    material_s2.heat_capac = 0.6
    material_s2.thermal_conduc = 2.5

    # First layer north

    layer_n1 = Layer(parent=roof_north, id=0)
    layer_n1.thickness = 0.3

    from teaser.logic.buildingobjects.buildingphysics.material import Material

    material_n1 = Material(layer_n1)
    material_n1.name = "Insulation"
    material_n1.density = 120.0
    material_n1.heat_capac = 0.04
    material_n1.thermal_conduc = 1.0

    # Second layer north

    layer_n2 = Layer(parent=roof_north, id=1)
    layer_n2.thickness = 0.15

    material_n2 = Material(layer_n2)
    material_n2.name = "Tile"
    material_n2.density = 1400.0
    material_n2.heat_capac = 0.6
    material_n2.thermal_conduc = 2.5

    # Another option is to use the database for typical wall constructions,
    # but set area, tilt, orientation individually. To simplify code,
    # we save individual information for exterior walls, interior walls into
    # dictionaries.
    # outer walls
    # {'name_of_wall': [area, tilt, orientation]}
    # interior walls
    # {'name_of_wall': [area, tilt, orientation]}

    from teaser.logic.buildingobjects.buildingphysics.outerwall import OuterWall

    out_wall_dict = {"OuterWall_north": [10.0, 90.0, 0.0],
                     "OuterWall_east": [14.0, 90.0, 90.0],
                     "OuterWall_south": [10.0, 90.0, 180.0],
                     "OuterWall_west": [14.0, 90.0, 270.0]}

    # For ground floors the orientation is always -2

    ground_floor_dict = {"GroundFloor": [100.0, 0.0, -2]}

    from teaser.logic.buildingobjects.buildingphysics.innerwall import InnerWall

    in_wall_dict = {"InnerWall1": [10.0],
                    "InnerWall2": [14.0],
                    "InnerWall3": [10.0]}

    for key, value in out_wall_dict.items():
        # Instantiate class, key is the name
        out_wall = OuterWall(parent=tz)
        out_wall.name = key
        # Use load_type_element() function of the building element, and pass
        # over the year of construction of the building and the type of
        # construction (in this case `heavy`).

        out_wall.load_type_element(
            year=bldg.year_of_construction,
            construction='heavy')

        # area, tilt and orientation need to be set individually.

        out_wall.area = value[0]
        out_wall.tilt = value[1]
        out_wall.orientation = value[2]

    # Repeat the procedure for inner walls and ground floors

    for key, value in in_wall_dict.items():

        in_wall = InnerWall(parent=tz)
        in_wall.name = key
        in_wall.load_type_element(
            year=bldg.year_of_construction,
            construction='heavy')
        in_wall.area = value[0]

    from teaser.logic.buildingobjects.buildingphysics.groundfloor import \
        GroundFloor

    for key, value in ground_floor_dict.items():

        ground = GroundFloor(parent=tz)
        ground.name = key
        ground.load_type_element(
            year=bldg.year_of_construction,
            construction='heavy')
        ground.area = value[0]
        ground.tilt = value[1]
        ground.orientation = value[2]

    from teaser.logic.buildingobjects.buildingphysics.window import Window

    win_dict = {"Window_east": [5.0, 90.0, 90.0],
                "Window_south": [8.0, 90.0, 180.0],
                "Window_west": [5.0, 90.0, 270.0]}

    for key, value in win_dict.items():

        win = Window(parent=tz)
        win.name = key
        win.area = value[0]
        win.tilt = value[1]
        win.orientation = value[2]

        # Additional to the already known attributes the window has
        # additional attributes. Window.g_value describes the solar gain
        # through windows, a_conv the convective heat transmission due to
        # absorption of the window on the inner side. shading_g_total and
        # shading_max_irr refers to the shading (solar gain reduction of the
        # shading and shading_max_irr the threshold of irradiance to
        # automatically apply shading).

        win.inner_convection = 1.7
        win.inner_radiation = 5.0
        win.outer_convection = 20.0
        win.outer_radiation = 5.0
        win.g_value = 0.789
        win.a_conv = 0.03
        win.shading_g_total = 0.0
        win.shading_max_irr = 180.0

        # One equivalent layer for windows

        win_layer = Layer(parent=win)
        win_layer.id = 1
        win_layer.thickness = 0.024

        # Material for glass

        win_material = Material(win_layer)
        win_material.name = "GlasWindow"
        win_material.thermal_conduc = 0.067
        win_material.transmittance = 0.9
Example #7
0
def example_create_building():
    '''
    Instantiate a Project class (with load_data set to true), instantiate a
    Building class, with the project as a parent. This automatically adds the
    specific building and all its future changes to the project.
    '''
    prj = Project(load_data = True)
    bldg = Building(parent = prj)

    '''Set some building parameters'''

    bldg.name = "SuperExampleBuilding"
    bldg.street_name = "Awesome Avenue 42"
    bldg.city = "46325 Fantastic Town"
    bldg.year_of_construction = 1988
    bldg.number_of_floors = 1
    bldg.height_of_floors = 3.5

    '''Instantiate a ThermalZone class, with building as parent and set  some
    parameters of the thermal zone'''

    tz = ThermalZone(parent = bldg)
    tz.name = "Living Room"
    tz.area = 140.0
    tz.volume = tz.area * bldg.number_of_floors * bldg.height_of_floors
    tz.infiltration_rate = 0.5

    '''Instantiate UseConditions18599 class with thermal zone as parent,
    and load the use conditions for the usage 'Living' '''

    tz.use_conditions = BoundaryConditions(parent = tz)
    tz.use_conditions.load_use_conditions("Living")

    '''We save information of the Outer and Inner walls as well as Windows
    in dicts, the key is the name, while the value is a list (if applicable)
    [year of construciton,
     construction type,
     area,
     tilt,
     orientation]'''

    out_wall_dict = {"Outer Wall 1": [bldg.year_of_construction, 'heavy',
                                      10.0, 90.0, 0.0],
                     "Outer Wall 2": [bldg.year_of_construction, 'heavy',
                                      14.0, 90.0, 90.0],
                     "Outer Wall 3": [bldg.year_of_construction, 'heavy',
                                      10.0, 90.0, 180.0],
                     "Outer Wall 4": [bldg.year_of_construction, 'heavy',
                                      14.0, 90.0, 270.0]}

    in_wall_dict = {"Inner Wall 1": [bldg.year_of_construction, 'light', 10.0],
                    "Inner Wall 2": [bldg.year_of_construction, 'heavy', 14.0],
                    "Inner Wall 3": [bldg.year_of_construction, 'light', 10.0]}

    win_dict = {"Window 1": [bldg.year_of_construction,
                             5.0, 90.0, 90.0],
                "Window 2": [bldg.year_of_construction,
                             8.0, 90.0, 180.0],
                "Window 3": [bldg.year_of_construction,
                             5.0, 90.0, 270.0]}
    for key, value in out_wall_dict.items():
        '''instantiate OuterWall class'''
        out_wall = OuterWall(parent = tz)
        out_wall.name = key
        '''load typical construction, based on year of construction and
        construction type'''
        out_wall.load_type_element(year = value[0],
                                   construction = value[1])
        out_wall.area = value[2]
        out_wall.tilt = value[3]
        out_wall.orientation = value[4]

    for key, value in in_wall_dict.items():
        '''instantiate InnerWall class'''
        in_wall = InnerWall(parent = tz)
        in_wall.name = key
        '''load typical construction, based on year of construction and
        construction type'''
        in_wall.load_type_element(year = value[0],
                                  construction = value[1])
        in_wall.area = value[2]

    for key, value in win_dict.items():
        '''instantiate Window class'''
        win = Window(parent = tz)
        win.name = key
        win.area = value[1]
        win.tilt = value[2]
        win.orientation = value[3]
        '''
        We know the exact properties of the window, thus we set them instead
        of loading a typical construction
        '''
        win.inner_convection = 1.7
        win.inner_radiation = 5.0
        win.outer_convection = 20.0
        win.outer_radiation = 5.0
        win.g_value = 0.789
        win.a_conv = 0.03
        win.shading_g_total = 1.0
        win.shading_max_irr = 180.0
        '''Instantiate a Layer class, with window as parent, set attributes'''
        win_layer = Layer(parent = win)
        win_layer.id = 1
        win_layer.thickness = 0.024
        '''Instantiate a Material class, with window layer as parent,
        set attributes'''
        win_material = Material(win_layer)
        win_material.name = "GlasWindow"
        win_material.thermal_conduc = 0.067
        win_material.transmittance = 0.9

    '''Define a Rooftop and a Groundfloor, we don't need to set tilt and
    orientation because we take the default values'''

    roof = Rooftop(parent = tz)
    roof.name = "Roof"
    roof.load_type_element(bldg.year_of_construction, 'heavy')
    roof.area = 140.0

    ground = GroundFloor(parent = tz)
    ground.name = "Ground floor"
    ground.load_type_element(bldg.year_of_construction, 'heavy')
    ground.area = 140.0

    '''
    We calculate the RC Values according to AixLib procedure
    '''


    prj.used_library_calc = 'AixLib'
    prj.number_of_elements_calc = 2
    prj.merge_windows_calc = False

    prj.calc_all_buildings()
    '''
    Export the Modelica Record
    '''
    prj.export_aixlib(building_model="MultizoneEquipped",
                      zone_model="ThermalZoneEquipped",
                      corG=True,
                      internal_id=None,
                      path=None)

    '''Or we use Annex60 method with for elements'''
    #prj.calc_all_buildings(number_of_elements=4,
    #                       merge_windows=False,
    #                       used_library='Annex60')
    #prj.export_annex()

    '''
    Save new TEASER XML
    '''
    prj.save_gml("ExampleProject")
    prj.save_citygml("Easypeasy")
Example #8
0
def _load_building(prj, pyxb_bld, type):

    if type == "Building":
        bldg = Building(prj)

    elif type == "Office":
        bldg = Office(prj)

    elif type == "Institute":

        bldg = Institute(prj)

    elif type == "Institute4":
        bldg = Institute4(prj)

    elif type == "Institute8":
        bldg = Institute8(prj)

    elif type == "Residential":
        bldg = SingleFamilyDwelling(prj)

    bldg.name = pyxb_bld.name
    bldg.street_name = pyxb_bld.street_name
    bldg.city = pyxb_bld.city
    bldg.type_of_building = pyxb_bld.type_of_building
    bldg.year_of_construction = pyxb_bld.year_of_construction
    bldg.year_of_retrofit = pyxb_bld.year_of_retrofit
    bldg.number_of_floors = pyxb_bld.number_of_floors
    bldg.height_of_floors = pyxb_bld.height_of_floors

    if not pyxb_bld.ThermalZone:
        bldg.net_leased_area = pyxb_bld.net_leased_area

    if pyxb_bld.CentralAHU:
        pyxb_ahu = pyxb_bld.CentralAHU
        bldg.central_ahu = BuildingAHU(bldg)

        bldg.central_ahu.heating = pyxb_ahu.heating
        bldg.central_ahu.cooling = pyxb_ahu.cooling
        bldg.central_ahu.dehumidification = pyxb_ahu.dehumidification
        bldg.central_ahu.humidification = pyxb_ahu.humidification
        bldg.central_ahu.heat_recovery = pyxb_ahu.heat_recovery
        bldg.central_ahu.by_pass_dehumidification = \
                            pyxb_ahu.by_pass_dehumidification
        bldg.central_ahu.efficiency_recovery =pyxb_ahu.efficiency_recovery
        bldg.central_ahu.efficiency_revocery_false = \
                            pyxb_ahu.efficiency_revocery_false
        bldg.central_ahu.profile_min_relative_humidity = \
                            pyxb_ahu.profile_min_relative_humidity
        bldg.central_ahu.profile_max_relative_humidity = \
                            pyxb_ahu.profile_max_relative_humidity
        bldg.central_ahu.profile_v_flow = \
                            pyxb_ahu.profile_v_flow
        bldg.central_ahu.profile_temperature = \
                            pyxb_ahu.profile_temperature

    for pyxb_zone in pyxb_bld.ThermalZone:

        zone = ThermalZone(bldg)

        zone.name = pyxb_zone.name
        zone.area = pyxb_zone.area
        zone.volume = pyxb_zone.volume
        zone.infiltration_rate = pyxb_zone.infiltration_rate
        # zone.use_conditions.typical_length = pyxb_zone.typical_length
        # zone.use_conditions.typical_width = pyxb_zone.typical_width

        zone.use_conditions = BoundaryConditions(zone)

        pyxb_use = pyxb_zone.UseCondition.BoundaryConditions

        zone.use_conditions.usage = \
            pyxb_use.usage

        zone.use_conditions.usage_time = \
            pyxb_use.UsageOperationTime.usage_time
        zone.use_conditions.daily_usage_hours = \
            pyxb_use.UsageOperationTime.daily_usage_hours
        zone.use_conditions.yearly_usage_days = \
            pyxb_use.UsageOperationTime.yearly_usage_days
        zone.use_conditions.yearly_usage_hours_day = \
            pyxb_use.UsageOperationTime.yearly_usage_hours_day
        zone.use_conditions.yearly_usage_hours_night = \
            pyxb_use.UsageOperationTime.yearly_usage_hours_night
        zone.use_conditions.daily_operation_ahu_cooling = \
            pyxb_use.UsageOperationTime.daily_operation_ahu_cooling
        zone.use_conditions.yearly_heating_days = \
            pyxb_use.UsageOperationTime.yearly_heating_days
        zone.use_conditions.yearly_ahu_days = \
            pyxb_use.UsageOperationTime.yearly_ahu_days
        zone.use_conditions.yearly_cooling_days = \
            pyxb_use.UsageOperationTime.yearly_cooling_days
        zone.use_conditions.daily_operation_heating = \
            pyxb_use.UsageOperationTime.daily_operation_heating

        zone.use_conditions.maintained_illuminace = \
            pyxb_use.Lighting.maintained_illuminace
        zone.use_conditions.usage_level_height = \
            pyxb_use.Lighting.usage_level_height
        zone.use_conditions.red_factor_visual = \
            pyxb_use.Lighting.red_factor_visual
        zone.use_conditions.rel_absence = \
            pyxb_use.Lighting.rel_absence
        zone.use_conditions.room_index = \
            pyxb_use.Lighting.room_index
        zone.use_conditions.part_load_factor_lighting = \
            pyxb_use.Lighting.part_load_factor_lighting
        zone.use_conditions.ratio_conv_rad_lighting = \
            pyxb_use.Lighting.ratio_conv_rad_lighting

        zone.use_conditions.set_temp_heat = \
            pyxb_use.RoomClimate.set_temp_heat
        zone.use_conditions.set_temp_cool = \
            pyxb_use.RoomClimate.set_temp_cool
        zone.use_conditions.temp_set_back = \
            pyxb_use.RoomClimate.temp_set_back
        zone.use_conditions.min_temp_heat = \
            pyxb_use.RoomClimate.min_temp_heat
        zone.use_conditions.max_temp_cool = \
            pyxb_use.RoomClimate.max_temp_cool
        zone.use_conditions.rel_humidity = \
            pyxb_use.RoomClimate.rel_humidity
        zone.use_conditions.cooling_time = \
            pyxb_use.RoomClimate.cooling_time
        zone.use_conditions.heating_time = \
            pyxb_use.RoomClimate.heating_time
        zone.use_conditions.min_air_exchange = \
            pyxb_use.RoomClimate.min_air_exchange
        zone.use_conditions.rel_absence_ahu = \
            pyxb_use.RoomClimate.rel_absence_ahu
        zone.use_conditions.part_load_factor_ahu = \
            pyxb_use.RoomClimate.part_load_factor_ahu

        zone.use_conditions.persons = \
            pyxb_use.InternalGains.persons
        zone.use_conditions.profile_persons = \
            pyxb_use.InternalGains.profile_persons
        zone.use_conditions.machines = \
            pyxb_use.InternalGains.machines
        zone.use_conditions.profile_machines = \
            pyxb_use.InternalGains.profile_machines
        zone.use_conditions.lighting_power = \
            pyxb_use.InternalGains.lighting_power
        zone.use_conditions.profile_lighting = \
            pyxb_use.InternalGains.profile_lighting

        zone.use_conditions.min_ahu = \
            pyxb_use.AHU.min_ahu
        zone.use_conditions.max_ahu = \
            pyxb_use.AHU.max_ahu
        zone.use_conditions.with_ahu = \
            pyxb_use.AHU.with_ahu
        zone.use_constant_ach_rate = \
            pyxb_use.AHU.use_constant_ach_rate
        zone.base_ach = \
            pyxb_use.AHU.base_ach
        zone.max_user_ach = \
            pyxb_use.AHU.max_user_ach
        zone.max_overheating_ach = \
            pyxb_use.AHU.max_overheating_ach
        zone.max_summer_ach = \
            pyxb_use.AHU.max_summer_ach
        zone.winter_reduction = \
            pyxb_use.AHU.winter_reduction

        for pyxb_wall in pyxb_zone.OuterWall:

            out_wall = OuterWall(zone)

            set_basic_data_teaser(pyxb_wall, out_wall)
            set_layer_data_teaser(pyxb_wall, out_wall)

            # zone.outer_walls.append(out_wall)

        for pyxb_wall in pyxb_zone.Rooftop:

            roof = Rooftop(zone)

            set_basic_data_teaser(pyxb_wall, roof)
            set_layer_data_teaser(pyxb_wall, roof)

            # zone.outer_walls.append(roof)

        for pyxb_wall in pyxb_zone.GroundFloor:

            gr_floor = GroundFloor(zone)

            set_basic_data_teaser(pyxb_wall, gr_floor)
            set_layer_data_teaser(pyxb_wall, gr_floor)

            # zone.outer_walls.append(gr_floor)

        for pyxb_wall in pyxb_zone.InnerWall:

            in_wall = InnerWall(zone)

            set_basic_data_teaser(pyxb_wall, in_wall)
            set_layer_data_teaser(pyxb_wall, in_wall)

            # zone.inner_walls.append(in_wall)

        for pyxb_wall in pyxb_zone.Ceiling:

            ceiling = Ceiling(zone)

            set_basic_data_teaser(pyxb_wall, ceiling)
            set_layer_data_teaser(pyxb_wall, ceiling)

            # zone.inner_walls.append(ceiling)

        for pyxb_wall in pyxb_zone.Floor:

            floor = Floor(zone)

            set_basic_data_teaser(pyxb_wall, floor)
            set_layer_data_teaser(pyxb_wall, floor)

            # zone.inner_walls.append(floor)

        for pyxb_win in pyxb_zone.Window:

            win = Window(zone)

            set_basic_data_teaser(pyxb_win, win)
            set_layer_data_teaser(pyxb_win, win)