Example #1
0
from tedana import model, utils, io
from tedana.decomposition._utils import eimask, dwtmat, idwtmat
from tedana.selection._utils import (getelbow_cons, getelbow)
from tedana.due import due, BibTeX

LGR = logging.getLogger(__name__)

F_MAX = 500
Z_MAX = 8


@due.dcite(BibTeX("""
    @inproceedings{minka2001automatic,
      title={Automatic choice of dimensionality for PCA},
      author={Minka, Thomas P},
      booktitle={Advances in neural information processing systems},
      pages={598--604},
      year={2001}
    }
    """),
           description='Introduces method for choosing PCA dimensionality '
           'automatically')
def run_svd(data):
    """
    Run Singular Value Decomposition (SVD) on input data.

    Parameters
    ----------
    data : (S [*E] x T) array_like
        Optimally combined (S x T) or full multi-echo (S*E x T) data.
Example #2
0
    Returns
    -------
    out : (S [x E [x T]]) :obj:`numpy.ndarray`
        Unmasked `data` array
    """

    out = np.zeros(mask.shape + data.shape[1:], dtype=data.dtype)
    out[mask] = data
    return out


@due.dcite(BibTeX('@article{dice1945measures,'
                  'author={Dice, Lee R},'
                  'title={Measures of the amount of ecologic association between species},'
                  'year = {1945},'
                  'publisher = {Wiley Online Library},'
                  'journal = {Ecology},'
                  'volume={26},'
                  'number={3},'
                  'pages={297--302}}'),
           description='Introduction of Sorenson-Dice index by Dice in 1945.')
@due.dcite(BibTeX('@article{sorensen1948method,'
                  'author={S{\\o}rensen, Thorvald},'
                  'title={A method of establishing groups of equal amplitude '
                  'in plant sociology based on similarity of species and its '
                  'application to analyses of the vegetation on Danish commons},'
                  'year = {1948},'
                  'publisher = {Wiley Online Library},'
                  'journal = {Biol. Skr.},'
                  'volume={5},'
                  'pages={1--34}}'),
Example #3
0
    if add_const:  # drop beta for intercept, if specified
        betas = betas[:, :-1]

    if mask is not None:
        betas = utils.unmask(betas, mask)

    return betas


@due.dcite(BibTeX("""
           @article{hughett2007accurate,
             title={Accurate Computation of the F-to-z and t-to-z Transforms
                    for Large Arguments},
             author={Hughett, Paul},
             journal={Journal of Statistical Software},
             volume={23},
             number={1},
             pages={1--5},
             year={2007},
             publisher={Foundation for Open Access Statistics}
           }
           """),
           description='Introduces T-to-Z transform.')
@due.dcite(Doi('10.5281/zenodo.32508'),
           description='Python implementation of T-to-Z transform.')
def t_to_z(t_values, dof):
    """
    Convert t-values to z-values.

    Parameters
    ----------