""" import numpy as np; import theano import theano.tensor as T; import matplotlib.pyplot as plt; import telauges.utils as utils; from telauges.conv_ae import ConvAE; n_epochs=10; training_portion=1; batch_size=50; nkerns=49; datasets=utils.load_mnist("data/mnist.pkl.gz"); rng=np.random.RandomState(23455); ### Loading and preparing dataset train_set_x, train_set_y = datasets[0]; valid_set_x, valid_set_y = datasets[1]; test_set_x, test_set_y = datasets[2]; n_train_batches=int(train_set_x.get_value(borrow=True).shape[0]*training_portion); n_valid_batches=valid_set_x.get_value(borrow=True).shape[0]; n_test_batches=test_set_x.get_value(borrow=True).shape[0]; n_train_batches /= batch_size; # number of train data batches n_valid_batches /= batch_size; # number of valid data batches n_test_batches /= batch_size; # number of test data batches
import cPickle as pickle import numpy as np import theano import theano.tensor as T import matplotlib.pyplot as plt import telauges.utils as utils from telauges.hidden_layer import AutoEncoder n_epochs = 100 training_portion = 1 batch_size = 100 datasets = utils.load_mnist("data/mnist.pkl.gz") rng = np.random.RandomState(23455) ### Loading and preparing dataset train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] n_train_batches = int( train_set_x.get_value(borrow=True).shape[0] * training_portion) n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] print n_train_batches print n_valid_batches print n_test_batches