Example #1
0
def build_template(tab_filter, preference):
    # If tab_filter is not a string, make it an empty string
    if not isinstance(tab_filter, str):
        tab_filter = ''

    template = TABS_TEMPLATE.replace('%FILTER%', tab_filter)

    if isinstance(preference, str) and preference != '':
        return template.replace('%PREFERENCE%', 'data-tab-preference="{}"'.format(preference))

    return template.replace('%PREFERENCE%', '')
Example #2
0
def build_template(tab_filter, preference):
    # If tab_filter is not a string, make it an empty string
    if not isinstance(tab_filter, str):
        tab_filter = ''

    template = TABS_TEMPLATE.replace('%FILTER%', tab_filter)

    if isinstance(preference, str) and preference != '':
        return template.replace('%PREFERENCE%', 'data-tab-preference="{}"'.format(preference))

    return template.replace('%PREFERENCE%', '')
Example #3
0
def buildTemplate(tabFilter, preference):
    # If tabFilter is not a string, make it an empty string
    if type(tabFilter) != str:
        tabFilter = ""
    template = TABS_TEMPLATE.replace("%FILTER%", tabFilter)

    if type(preference) == str and preference != "":
        template = template.replace("%PREFERENCE%", "data-tab-preference=\"" + preference + "\"")
    else:
        template = template.replace("%PREFERENCE%", "")

    return template
Example #4
0
        p_i = p_list[i]
        n_i = n_list[i]

        distance_a_p = np.linalg.norm(a_i - p_i)**2
        distance_a_n = np.linalg.norm(a_i - n_i)**2

        result['distance_{}_a_p'.format(i)] = distance_a_p
        result['distance_{}_a_n'.format(i)] = distance_a_n

        for j in range(num_samples):
            a_j = a_list[j]
            p_j = p_list[j]
            n_j = n_list[j]

            distance_i_j_a = np.linalg.norm(a_i - a_j)**2
            distance_i_j_p = np.linalg.norm(p_i - p_j)**2
            distance_i_j_n = np.linalg.norm(n_i - n_j)**2

            result['distance_{}_{}_a'.format(i, j)] = distance_i_j_a
            result['distance_{}_{}_p'.format(i, j)] = distance_i_j_p
            result['distance_{}_{}_n'.format(i, j)] = distance_i_j_n

    with open('result.json', 'w') as file:
        json.dump(result, file, indent=4)

    from template import replace

    replace()

    K.clear_session()