def get_roc_curves(phn, num_mix_params, train_example_lengths,bgd, train_path,file_indices, sp,ep): FOMS = collections.defaultdict(list) for num_mix in num_mix_params: if num_mix > 1: outfile = np.load('data/%d_templates.npz' % num_mix) templates = tuple( outfile['arr_%d'%i] for i in xrange(len(outfile.files))) else: templates = (np.load('data/1_templates.npy')[0],) detection_array = np.zeros((train_example_lengths.shape[0], train_example_lengths.max() + 2),dtype=np.float32) linear_filters_cs = et.construct_linear_filters(templates, bgd) np.savez('data/linear_filter_%d.npz'% num_mix,*(tuple(lfc[0] for lfc in linear_filters_cs))) np.savez('data/c_%d.npz'%num_mix,*(tuple(lfc[1] for lfc in linear_filters_cs))) syllable = np.array((phn,)) (detection_array, example_start_end_times, detection_lengths, detection_template_ids)=gtrd.get_detection_scores_mixture_named_params( train_path, file_indices, detection_array, syllable, linear_filters_cs,S_config=sp, E_config=ep, verbose = True, num_examples =-1, return_detection_template_ids=True) np.save('data/detection_array_%d.npy' % num_mix,detection_array) np.save('data/detection_template_ids_%d.npy' % num_mix,detection_template_ids) np.save('data/detection_lengths_%d.npy' % num_mix,detection_lengths) if num_mix == num_mix_params[0]: out = open('data/example_start_end_times.pkl','wb') cPickle.dump(example_start_end_times,out) out.close() window_start = -int(np.mean(tuple( t.shape[0] for t in templates))/3.+.5) window_end = -window_start max_detect_vals = rf.get_max_detection_in_syllable_windows(detection_array, example_start_end_times, detection_lengths, window_start, window_end) max_detect_vals = max_detect_vals[:1000] np.save('data/max_detect_vals_%d_%s.npy' % (num_mix,phn),max_detect_vals) C0 = int(np.mean(tuple( t.shape[0] for t in templates))/3.+.5) C1 = int( 33 * 1.5 + .5) frame_rate = 1/.005 fpr, tpr = rf.get_roc_curve(max_detect_vals, detection_array, np.array(detection_lengths), example_start_end_times, C0,C1,frame_rate) np.save('data/fpr_%d_%s.npy' % (num_mix,phn), fpr) np.save('data/tpr_%d_%s.npy' % (num_mix,phn), tpr)
window_start,window_end = rf.get_auto_syllable_window(aar_template) max_detect_vals = rf.get_max_detection_in_syllable_windows(detection_array, example_start_end_times, detection_lengths, window_start, window_end) np.save(tmp_data_path+'max_detect_vals_aar2_waliji.npy',max_detect_vals) C0,C1 = rf.get_C0_C1(aar_template) frame_rate = 1/.005 false_positive_rates, true_positive_rates = rf.get_roc_curve(max_detect_vals, detection_array, np.array(detection_lengths), example_start_end_times, C0,C1,frame_rate) np.save(tmp_data_path+'fpr_aar_1.npy',false_positive_rates) np.save(tmp_data_path+'tpr_aar_1.npy',true_positive_rates) # Now we are going to test the mixtures # First thing to do is to test the registered mixtures # then we are going to try the padded mixtures import template_speech_rec.bernoulli_mixture as bm bem = bm.BernoulliMixture(2,aar_registered) bem.run_EM(.000001)
cPickle.dump(detection_lengths,out) out.close() window_start = -10 window_end = 10 max_detect_vals = rf.get_max_detection_in_syllable_windows(detection_array, example_start_end_times, detection_lengths, window_start, window_end) np.save('data/max_detect_vals_aar_%d.npy' % num_mix,max_detect_vals) C0 = 33 C1 = int( 33 * 1.5 + .5) frame_rate = 1/.005 fpr, tpr = rf.get_roc_curve(max_detect_vals, detection_array, np.array(detection_lengths), example_start_end_times, C0,C1,frame_rate) np.save('data/fpr_aar_%d.npy' % num_mix, fpr) np.save('data/tpr_aar_%d.npy' % num_mix, tpr) detection_clusters = rf.get_detect_clusters_threshold_array(max_detect_vals, detection_array, np.array(detection_lengths), C0,C1) out = open('data/detection_clusters_aar_%d.npy' % num_mix, 'wb') cPickle.dump(detection_clusters,out) out.close() for i in xrange(1,11):
def perform_phn_train_detection_SVM(phn, num_mix_params, train_example_lengths,bgd, train_path,file_indices, first_pass_fnrs): FOMS = collections.defaultdict(list) for num_mix in num_mix_params: if num_mix > 1: outfile = np.load('data/%d_templates.npz' % num_mix) templates = tuple( outfile['arr_%d'%i] for i in xrange(len(outfile.files))) else: templates = (np.load('data/1_templates.npy')[0],) detection_array = np.zeros((train_example_lengths.shape[0], train_example_lengths.max() + 2),dtype=np.float32) linear_filters_cs = et.construct_linear_filters(templates, bgd) np.savez('data/linear_filter_%d.npy'% num_mix,*(tuple(lfc[0] for lfc in linear_filters_cs))) np.savez('data/c_%d.npy'%num_mix,*(tuple(lfc[1] for lfc in linear_filters_cs))) syllable = np.array((phn,)) (detection_array, example_start_end_times, detection_lengths, detection_template_ids)=get_detection_scores_mixture_named_params( utterances_path, file_indices, detection_array, syllable, linear_filters_cs,S_config=sp, E_config=ep, verbose = True, num_examples =-1, return_detection_template_ids=True) np.save('data/detection_array_%d.npy' % num_mix,detection_array) np.save('data/detection_template_ids_%d.npy' % num_mix,detection_template_ids) if num_mix == num_mix[0]: out = open('data/example_start_end_times.pkl','wb') cPickle.dump(example_start_end_times,out) out.close() out = open('data/detection_lengths.pkl','wb') cPickle.dump(detection_lengths,out) out.close() window_start = -int(np.mean(tuple( t.shape[0] for t in templates))/3.+.5) window_end = -window_start max_detect_vals = rf.get_max_detection_in_syllable_windows(detection_array, example_start_end_times, detection_lengths, window_start, window_end) np.save('data/max_detect_vals_%d.npy' % num_mix,max_detect_vals) C0 = int(np.mean(tuple( t.shape[0] for t in templates))/3.+.5) C1 = int( 33 * 1.5 + .5) frame_rate = 1/.005 fpr, tpr = rf.get_roc_curve(max_detect_vals, detection_array, np.array(detection_lengths), example_start_end_times, C0,C1,frame_rate) np.save('data/fpr_%d.npy' % num_mix, fpr) np.save('data/tpr_%d.npy' % num_mix, tpr) detection_clusters = rf.get_detect_clusters_threshold_array(max_detect_vals, detection_array, np.array(detection_lengths), C0,C1) out = open('data/detection_clusters_%d.npy' % num_mix, 'wb') cPickle.dump(detection_clusters,out) out.close() for i in xrange(1,11): thresh_idx = np.arange(fpr.shape[0])[fpr*60 <= i].min() FOMS[num_mix].append(tpr[thresh_idx]) template_lengths = tuple(t.shape[0] for t in templates) for fnr in first_pass_fnrs: print "num_mix=%d,fnr=%d" % (num_mix,fnr) thresh_id = int(len(detection_clusters)* fnr/100. + 5) (pos_times, false_pos_times, false_neg_times) = rf.get_pos_false_pos_false_neg_detect_points( detection_clusters[thresh_id], detection_array, detection_template_ids, template_lengths, window_start, window_end,example_start_end_times, utterances_path, train_file_indices, verbose=True) out = open('data/false_pos_times_%d_%d.pkl' % (num_mix,fnr),'wb') pickle.dump(false_pos_times,out) out.close() out = open('data/pos_times_%d_%d.pkl' % (num_mix,fnr),'wb') pickle.dump(pos_times,out) out.close() out = open('data/false_neg_times_%d_%d.pkl' % (num_mix,fnr),'wb') pickle.dump(false_pos_times,out) out.close() return FOMS