def join(args, outs, chunk_defs, chunk_outs): outs.coerce_strings() # combine the duplicate summary counts dup_summaries = [json.load(open(out.duplicate_summary)) for out in chunk_outs] combined_dups = reduce(lambda x,y: tenkit.dict_utils.add_dicts(x,y,2), dup_summaries) diffusion_summary = json.load(open(args.diffusion_dup_summary)) combined_dups['read_counts'] = {} combined_dups['read_counts']['perfect_read_count'] = args.perfect_read_count for k, v in diffusion_summary.items(): combined_dups[k] = v # TODO: Remove null_* observed_* ? with open(outs.duplicate_summary, 'w') as f: json.dump(combined_dups, f, indent=4) # combine & index the chunks of the BAM if args.write_bam: tk_bam.merge(outs.output, [c.output for c in chunk_outs], args.__threads) tk_bam.index(outs.output) outs.index = outs.output + '.bai' else: outs.output = None outs.index = None
def call_haploid(haplotype, bam, locus, reference_path, variant_caller, gatk_path, mem_gb): bam_name = "hap" + str(haplotype) + ".bam" haploid_bam, _ = tenkit.bam.create_bam_outfile(bam_name, None, None, template=bam) (chrom, start, stop) = tk_io.get_locus_info(locus) for read in bam.fetch(chrom, start, stop): readhap = dict(read.tags).get('HP') if readhap != None and int(readhap) == haplotype: haploid_bam.write(read) haploid_bam.close() tk_bam.index(bam_name) tmp_vcf_name = "tmp_hap" + str(haplotype) + ".vcf" vcf_name = "hap" + str(haplotype) + ".vcf" fasta_path = tk_ref.get_fasta(reference_path) vc.run_variant_caller(variant_caller, gatk_path, mem_gb, fasta_path, bam_name, tmp_vcf_name, haploid_mode=True) longranger.variants.canonicalize(tmp_vcf_name, vcf_name) tenkit.tabix.index_vcf(vcf_name) bam_in = tk_bam.create_bam_infile(bam_name) return (vcf_name + ".gz", bam_in)
def join(args, outs, chunk_defs, chunk_outs): outs.coerce_strings() # Concatenate chunks if len(chunk_outs) == 1: subprocess.call(['mv', chunk_outs[0].phased_possorted_bam, outs.phased_possorted_bam]) else: tk_bam.concatenate(outs.phased_possorted_bam, [out.phased_possorted_bam for out in chunk_outs]) tk_bam.index(outs.phased_possorted_bam) outs.phased_possorted_bam_index = outs.phased_possorted_bam + ".bai" total_reads = 0 phased_reads = 0 molecule_tagged_reads = 0 for chunk_out in chunk_outs: total_reads += chunk_out.total_reads phased_reads += chunk_out.phased_reads molecule_tagged_reads += chunk_out.molecule_tagged_reads outs.total_reads = total_reads outs.phased_reads = phased_reads outs.molecule_tagged_reads = molecule_tagged_reads fract_reads_phased = tk_stats.robust_divide(float(phased_reads), float(total_reads)) fract_reads_molecule_id = tk_stats.robust_divide(float(molecule_tagged_reads), float(total_reads)) stats = { "fract_reads_phased": fract_reads_phased, "fract_reads_molecule_id": fract_reads_molecule_id, } with open(outs.summary, 'w') as summary_file: json.dump(tenkit.safe_json.json_sanitize(stats), summary_file)
def join(args, outs, chunk_defs, chunk_outs): outs.coerce_strings() input_bams = [str(chunk.output) for chunk in chunk_outs] #merg and index args_merge = [ 'sambamba', 'merge', '-t', str(args.__threads), 'output_merge.bam' ] #create an extended list to put at the end of args_merge args_merge.extend(input_bams) subprocess.check_call(args_merge) os.rename('output_merge.bam', outs.output) os.rename('output_merge.bam.bai', outs.output + '.bai') tk_bam.concatenate(outs.output, input_bams) tk_bam.index(outs.output)
def main(args, outs): """ Given a set of barcodes and a possorted bam, return a new BAM that only contains those barcodes """ useful_bcs = set(args.barcode_subset.split(',')) bam_h = pysam.Samfile(args.possorted_bam) outf_h = pysam.Samfile(outs.subset_bam, 'wb', template=bam_h) for rec in bam_h: try: cb = rec.get_tag('CB') except KeyError: continue if cb in useful_bcs: outf_h.write(rec) outf_h.close() tk_bam.index(outs.subset_bam)
def join(args, outs, chunk_defs, chunk_outs): outs.coerce_strings() # combine the duplicate summary counts dup_summaries = [ json.load(open(out.duplicate_summary)) for out in chunk_outs ] combined_dups = reduce(lambda x, y: tenkit.dict_utils.add_dicts(x, y, 2), dup_summaries) combined_dups['read_counts'] = {} combined_dups['read_counts'][ 'perfect_read_count'] = args.perfect_read_count f = open(outs.duplicate_summary, 'w') json.dump(combined_dups, f) f.close() # combine & index the chunks of the BAM tk_bam.concatenate(outs.output, [c.output for c in chunk_outs]) tk_bam.index(outs.output) outs.index = outs.output + '.bai'
def join(args, outs, chunk_defs, chunk_outs): outs.coerce_strings() input_bams = [str(chunk.output) for chunk in chunk_outs] merge(input_bams, outs.output, args.__threads) outs.index = outs.output + '.bai' tk_bam.index(outs.output)
def join(args, outs, chunk_defs, chunk_outs): outs.coerce_strings() input_bams = [str(chunk.default) for chunk in chunk_outs] merge(input_bams, outs.default, args.__threads) tk_bam.index(outs.default) outs.perfect_read_count = sum([chunk.perfect_read_count for chunk in chunk_outs])
def join(args, outs, chunk_defs, chunk_outs): outs.coerce_strings() input_bams = [str(chunk.output) for chunk in chunk_outs] tk_bam.concatenate(outs.output, input_bams) tk_bam.index(outs.output)
def join(args, outs, chunk_defs, chunk_outs): contigs = [] contig_fastqs = [] contig_bams = [] if len(chunk_outs) == 0: # No input reads # Create empty BAM file with open(outs.contig_bam, 'w') as f: pass outs.contig_bam_bai = None # Create empty contig FASTA with open(outs.contig_fasta, 'w') as f: pass outs.contig_fasta_fai = None # Create empty contig FASTQ with open(outs.contig_fastq, 'w') as f: pass outs.metrics_summary_json = None outs.summary_tsv = None outs.umi_summary_tsv = None return summary_tsvs = [] umi_summary_tsvs = [] for chunk_out in chunk_outs: if not os.path.isfile(chunk_out.contig_fasta): continue contigs.append(chunk_out.contig_fasta) contig_fastqs.append(chunk_out.contig_fastq) contig_bams.append(chunk_out.contig_bam) summary_tsvs.append(chunk_out.summary_tsv) umi_summary_tsvs.append(chunk_out.umi_summary_tsv) cr_io.concatenate_files(outs.contig_fasta, contigs) if os.path.getsize(outs.contig_fasta) > 0: tk_subproc.check_call('samtools faidx %s' % outs.contig_fasta, shell=True) outs.contig_fasta_fai = outs.contig_fasta + '.fai' cr_io.concatenate_files(outs.contig_fastq, contig_fastqs) if len(summary_tsvs) > 0: cr_io.concatenate_headered_files(outs.summary_tsv, summary_tsvs) if len(umi_summary_tsvs) > 0: cr_io.concatenate_headered_files(outs.umi_summary_tsv, umi_summary_tsvs) if contig_bams: # Merge every N BAMs. Trying to merge them all at once # risks hitting the filehandle limit. n_merged = 0 while len(contig_bams) > 1: to_merge = contig_bams[0:MERGE_BAMS_N] tmp_bam = martian.make_path('merged-%04d.bam' % n_merged) n_merged += 1 print "Merging %d BAMs into %s ..." % (len(to_merge), tmp_bam) tk_bam.merge(tmp_bam, to_merge, threads=args.__threads) # Delete any temporary bams that have been merged for in_bam in to_merge: if os.path.basename(in_bam).startswith('merged-'): cr_io.remove(in_bam) # Pop the input bams and push the merged bam contig_bams = contig_bams[len(to_merge):] + [tmp_bam] if os.path.basename(contig_bams[0]).startswith('merged-'): # We merged at least two chunks together. # Rename it to the output bam. cr_io.move(contig_bams[0], outs.contig_bam) else: # There was only a single chunk, so copy it from the input cr_io.copy(contig_bams[0], outs.contig_bam) tk_bam.index(outs.contig_bam) # Make sure the Martian out matches the actual index filename outs.contig_bam_bai = outs.contig_bam + '.bai' # Merge the assembler summary jsons merged_summary = cr_io.merge_jsons_single_level( [out.metrics_summary_json for out in chunk_outs]) with open(outs.metrics_summary_json, 'w') as f: json.dump(tk_safe_json.json_sanitize(merged_summary), f, indent=4, sort_keys=True)
def join(args, outs, chunk_defs, chunk_outs): args_dict ={} args_dict["bc_allow_indel"]=args.bc_allow_indel args_dict["bc_max_error_allowed"]=args.bc_max_error_allowed args_dict["bc_pseudo_count"]=args.bc_pseudo_count args_dict["bc_use_mapping"]=args.bc_use_mapping args_dict["bc_mapq"]=args.bc_mapq args_dict["frag_no_merging"]=args.frag_no_merging args_dict["frag_mapq"]=args.frag_mapq args_dict["frag_pval"]=args.frag_pval args_dict["frag_freq"]=args.frag_freq fsummary = open(outs.summary, "w") fsummary.write(safe_json.safe_jsonify(args_dict)) fsummary.close() tk_bam.concatenate(out_file_name=outs.pos_sorted_bam, all_in_file_names=[chunk.pos_sorted_bam for chunk in chunk_outs]) tk_bam.index(outs.pos_sorted_bam) outs.pos_sorted_bam_index = outs.pos_sorted_bam + '.bai' bam_in = tk_bam.create_bam_infile(outs.pos_sorted_bam) chroms = bam_in.references barcode_whitelist = list(tk_seq.load_barcode_whitelist(args.barcode_whitelist)) barcode_whitelist.sort() # Combine fragment csv files into a single h5 file in_csv_files = [co.fragments+"_"+cd.tid+".csv" for (cd, co) in zip(chunk_defs, chunk_outs) if os.path.exists(co.fragments+"_"+cd.tid+".csv")] nfrags = 0 if len(in_csv_files) > 0: bc_num_frags = defaultdict(int) bc_num_reads = defaultdict(int) bc_num_single_reads = defaultdict(int) bc_num_lens = defaultdict(int) temp_csv_barcodes = outs.barcodes+"_temp.csv" nfrags = 0 for f in in_csv_files: # TODO - sequentially append to fragments.h5 file to keep memory under control # - handle multiple GEM groups properly. # ensure the chroms column has string /categorical type in hdf5 # - same fixes for barcodes.h5 file # handle 0-length outputs -- does that result in None file outs? frag_in = p.read_csv(f, names=["tid", "start_pos", "end_pos", "bc_id", "num_reads"]) frag_in["obs_len"] = frag_in.end_pos - frag_in.start_pos frag_in[frag_in.num_reads <= 1].obs_len = 1000 frag_in["est_len"] = np.maximum(1, frag_in["obs_len"] * (frag_in.num_reads + 1) / np.maximum(1, frag_in.num_reads - 1)).astype("int") frag_in[frag_in.num_reads <= 1].est_len = 1000 barcode_seqs = [] molecule_ids = [] for (i, row) in frag_in.iterrows(): bc_num_frags[row.bc_id] += 1 bc_num_reads[row.bc_id] += row.num_reads bc_num_lens[row.bc_id] += row.est_len bc_wl_id = int(row.bc_id) % len(barcode_whitelist) gg = int(row.bc_id) / len(barcode_whitelist) + 1 barcode_seq = "%s-%d" % (barcode_whitelist[bc_wl_id], gg) barcode_seqs.append(barcode_seq) molecule_ids.append(nfrags) nfrags += 1 frag_in["bc"] = p.Categorical(barcode_seqs) frag_in["chrom"] = p.Categorical.from_codes(frag_in.tid, chroms) frag_in["molecule_id"] = molecule_ids del frag_in["tid"] del frag_in["bc_id"] if len(frag_in) > 0: tenkit.hdf5.append_data_frame(outs.fragments, frag_in) with open(temp_csv_barcodes, "w") as csv_out: csv_out.write("bc,bc_est_len,bc_linked_read_fraction,bc_linked_fragment_fraction,bc_mean_reads_per_fragment,bc_num_fragments,bc_num_reads\n") for bc_id in range(len(barcode_whitelist)): bc = barcode_whitelist[bc_id]+"-1" if bc_id in bc_num_frags: bc_est_len = bc_num_lens[bc_id] bc_linked_read_fraction = 1.0 - bc_num_single_reads[bc_id]*1.0/bc_num_reads[bc_id] bc_linked_fragment_fraction = 1.0 - bc_num_single_reads[bc_id]*1.0/bc_num_frags[bc_id] bc_mean_reads_per_fragment = bc_num_reads[bc_id]*1.0/bc_num_frags[bc_id] csv_out.write("%s,%d,%f,%f,%f,%d,%d\n" % (bc, bc_est_len, bc_linked_read_fraction, bc_linked_fragment_fraction, bc_mean_reads_per_fragment, bc_num_frags[bc_id], bc_num_reads[bc_id])) if nfrags == 0: outs.fragments = None outs.barcodes = None else: tenkit.hdf5.create_tabix_index(outs.fragments, 'chrom', 'start_pos', 'end_pos') df_barcodes = p.read_csv(temp_csv_barcodes) tenkit.hdf5.append_data_frame(outs.barcodes, df_barcodes) else: outs.fragments = None outs.barcodes= None summary = {} # Compute high-level BC summary metrics # Load BC data if outs.barcodes: bc_df = tenkit.hdf5.read_data_frame(outs.barcodes) fragment_df = tenkit.hdf5.read_data_frame(outs.fragments, query_cols=['bc', 'num_reads', 'est_len', 'chrom', 'start_pos']) bc_df.sort('bc_num_reads', inplace=True) # bin the bc counts and write a json histogram file n_reads = bc_df.bc_num_reads.values max_val = np.percentile(n_reads, 99.99) * 1.3 min_val = n_reads.min() num_bins = 400 step = math.ceil((max_val - min_val)/num_bins) bins = np.arange(min_val, max_val, step) (hist, edges) = np.histogram(n_reads, bins=bins) bc_count_hist = {int(edges[i]):hist[i] for i in range(len(bins)-1)} # Summarize properties of n50 and n90 BC set bc_df['cum_reads'] = np.cumsum(bc_df.bc_num_reads) n50_read_thresh = sum(bc_df.bc_num_reads) * 0.5 n50_bcs = bc_df[bc_df.cum_reads > n50_read_thresh] n50_fra = fragment_df[fragment_df.bc.isin(n50_bcs.bc)] n50_stats = high_level_stats("n50", n50_fra, n50_bcs) del n50_fra n90_read_thresh = sum(bc_df.bc_num_reads) * 0.1 n90_bcs = bc_df[bc_df.cum_reads > n90_read_thresh] n90_fra = fragment_df[fragment_df.bc.isin(n90_bcs.bc)] n90_stats = high_level_stats("n90", n90_fra, n90_bcs) del n90_fra for (k,v) in n50_stats.iteritems(): summary[k] = v for (k,v) in n90_stats.iteritems(): summary[k] = v # Generate a fragment length histogram fragment_df['len_bin'] = np.floor_divide(fragment_df.est_len.values, FRAG_LEN_HIST_BIN_SIZE).astype(int) * FRAG_LEN_HIST_BIN_SIZE multi_read_frags = fragment_df[fragment_df.num_reads > 1] len_bins = multi_read_frags.groupby(['len_bin']).apply(len) del multi_read_frags len_hist = {k:v for (k,v) in len_bins.iteritems()} # Write fragment length hist to json with open(outs.fragment_size, 'w') as fragment_size_file: tenkit.safe_json.dump_numpy(len_hist, fragment_size_file) # Estimate total DNA per partition by looking at hottest 1000 GEMs or GEMs w/ bc_mean_reads_per_fragment > 2, whichever is fewer hot_bcs = bc_df[np.logical_and(bc_df.bc_mean_reads_per_fragment > 2.0, bc_df.bc_num_reads > 25)] hot_bcs.sort('bc_mean_reads_per_fragment', inplace=True) if len(hot_bcs) > 50: hot_bcs = hot_bcs[-NUM_BCS_LOADING_ESTIMATE:] summary['estimated_dna_per_partition'] = round(scipy.stats.tmean(hot_bcs.bc_est_len, scipy.percentile(hot_bcs.bc_est_len, (1,99)))) else: summary['estimated_dna_per_partition'] = None # Read-based effective diversity reads = bc_df.bc_num_reads.values sum_sq = (reads**2.0).sum() effective_diversity = tk_stats.robust_divide((reads.sum()**2.0), float(sum_sq)) summary['effective_diversity_reads'] = effective_diversity # Fragment-based effective diversity fragments = bc_df.bc_num_fragments.values sum_sq = (fragments**2.0).sum() effective_diversity = tk_stats.robust_divide((fragments.sum()**2.0), float(sum_sq)) summary['effective_diversity_fragments'] = effective_diversity else: # No fragment_size file emitted outs.fragment_size = None n50_stats = high_level_stats("n50", None, None) n90_stats = high_level_stats("n90", None, None) for (k,v) in n50_stats.iteritems(): summary[k] = v for (k,v) in n90_stats.iteritems(): summary[k] = v bc_count_hist = {} summary['estimated_dna_per_partition'] = None summary['effective_diversity_reads'] = None summary['effective_diversity_fragments'] = None with open(outs.barcode_histogram, 'w') as barcode_hist_file: tenkit.safe_json.dump_numpy(bc_count_hist, barcode_hist_file) # Write summary to json with open(outs.single_partition, 'w') as summary_file: tenkit.safe_json.dump_numpy(summary, summary_file, pretty=True)
def join(args, outs, chunk_defs, chunk_outs): contigs = [] contig_fastqs = [] contig_bams = [] summary_df_parts = [] umi_summary_df_parts = [] for chunk_out in chunk_outs: if not os.path.isfile(chunk_out.contig_fasta): continue contigs.append(chunk_out.contig_fasta) contig_fastqs.append(chunk_out.contig_fastq) contig_bams.append(chunk_out.contig_bam) summary_df_parts.append( pd.read_csv(chunk_out.summary_tsv, header=0, index_col=None, sep='\t', dtype={ 'component': int, 'num_reads': int, 'num_pairs': int, 'num_umis': int })) umi_summary_df_parts.append( pd.read_csv(chunk_out.umi_summary_tsv, header=0, index_col=None, sep='\t', dtype={ 'umi_id': int, 'reads': int, 'min_umi_reads': int, 'contigs': str })) summary_df = pd.concat(summary_df_parts, ignore_index=True) umi_summary_df = pd.concat(umi_summary_df_parts, ignore_index=True) cr_utils.concatenate_files(outs.contig_fasta, contigs) if os.path.getsize(outs.contig_fasta) > 0: subprocess.check_call('samtools faidx %s' % outs.contig_fasta, shell=True) outs.contig_fasta_fai = outs.contig_fasta + '.fai' cr_utils.concatenate_files(outs.contig_fastq, contig_fastqs) if summary_df is not None: summary_df.to_csv(outs.summary_tsv, header=True, index=False, sep='\t') if umi_summary_df is not None: umi_summary_df.to_csv(outs.umi_summary_tsv, header=True, index=False, sep='\t') if contig_bams: tk_bam.merge(outs.contig_bam, contig_bams, threads=args.__threads) tk_bam.index(outs.contig_bam) # Make sure the Martian out matches the actual index filename outs.contig_bam_bai = outs.contig_bam + '.bai' # Merge the assembler summary jsons merged_summary = cr_utils.merge_jsons_single_level( [out.metrics_summary_json for out in chunk_outs]) with open(outs.metrics_summary_json, 'w') as f: json.dump(tk_safe_json.json_sanitize(merged_summary), f, indent=4, sort_keys=True)