Example #1
0
def resnet_model(images,
                 is_training,
                 num_classes,
                 resnet_size=50,
                 return_intermediate_values=False,
                 film_generator_fn=None,
                 film_generator_input=None):
    """Returns resnet model, optionally returning intermediate endpoint tensors.

  Args:
    images: A Tensor representing a batch [N,H,W,C] of input images.
    is_training: A boolean. Set to True to add operations required only when
      training the classifier.
    num_classes: Dimensionality of output logits emitted by final dense layer.
    resnet_size: Size of resnet. One of [18, 34, 50, 101, 152, 200].
    return_intermediate_values: If True, returns a dictionary of output and
      intermediate activation values.
    film_generator_fn: Callable that returns a List (for each block layer) of
      Lists (per ResNet block) of FiLM conditioning vectors.
    film_generator_input: Embedding tensor to be passed to film_generator_fn.
  """
    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
        bottleneck = False
    else:
        bottleneck = True

    model = resnet_lib.Model(resnet_size=resnet_size,
                             bottleneck=bottleneck,
                             num_classes=num_classes,
                             num_filters=64,
                             kernel_size=7,
                             conv_stride=2,
                             first_pool_size=3,
                             first_pool_stride=2,
                             block_sizes=_get_block_sizes(resnet_size),
                             block_strides=[1, 2, 2, 2],
                             resnet_version=resnet_lib.DEFAULT_VERSION,
                             data_format='channels_last',
                             dtype=resnet_lib.DEFAULT_DTYPE)
    final_dense = model(images, is_training, film_generator_fn,
                        film_generator_input)
    if return_intermediate_values:
        return resnet_endpoints(model)
    else:
        return final_dense
Example #2
0
def get_resnet50_spatial(images, is_training):
    """ResNet50, but cut off last block and return before global pooling."""
    num_classes = 1001  # Dummy value, unused.
    model = resnet_lib.Model(resnet_size=50,
                             bottleneck=True,
                             num_classes=num_classes,
                             num_filters=64,
                             kernel_size=7,
                             conv_stride=2,
                             first_pool_size=3,
                             first_pool_stride=2,
                             block_sizes=[3, 4, 6],
                             block_strides=[1, 2, 2],
                             resnet_version=resnet_lib.DEFAULT_VERSION,
                             data_format='channels_last',
                             dtype=resnet_lib.DEFAULT_DTYPE)
    # Build the graph.
    _ = model(images, is_training)
    # Return pre-pooled dense spatial features.
    return resnet.resnet_endpoints(model)['block_layer3']
Example #3
0
def resnet_model(images,
                 is_training,
                 num_classes,
                 resnet_size=50,
                 return_intermediate_values=False,
                 film_generator_fn=None,
                 film_generator_input=None,
                 pretrain_checkpoint=None):
  """Returns resnet model, optionally returning intermediate endpoint tensors.

  Args:
    images: A Tensor representing a batch [N,H,W,C] of input images.
    is_training: A boolean. Set to True to add operations required only when
      training the classifier.
    num_classes: Dimensionality of output logits emitted by final dense layer.
    resnet_size: Size of resnet. One of [18, 34, 50, 101, 152, 200].
    return_intermediate_values: If True, returns a dictionary of output and
      intermediate activation values.
    film_generator_fn: Callable that returns a List (for each block layer) of
      Lists (per ResNet block) of FiLM conditioning vectors.
    film_generator_input: Embedding tensor to be passed to film_generator_fn.
    pretrain_checkpoint: String to initialize model weights from. Does *NOT*
      initialize final logits layer. ResNet checkpoints can be found here:
      https://github.com/tensorflow/models/tree/master/official/r1/resnet.
  """
  # For bigger models, we want to use "bottleneck" layers
  if resnet_size < 50:
    bottleneck = False
  else:
    bottleneck = True

  model = resnet_lib.Model(
      resnet_size=resnet_size,
      bottleneck=bottleneck,
      num_classes=num_classes,
      num_filters=64,
      kernel_size=7,
      conv_stride=2,
      first_pool_size=3,
      first_pool_stride=2,
      block_sizes=_get_block_sizes(resnet_size),
      block_strides=[1, 2, 2, 2],
      resnet_version=resnet_lib.DEFAULT_VERSION,
      data_format='channels_last',
      dtype=resnet_lib.DEFAULT_DTYPE
  )
  final_dense = model(images, is_training,
                      film_generator_fn, film_generator_input)
  if pretrain_checkpoint:
    # Initialize variables in ResNet, excluding the final dense layer and any
    # optimization-specific variables (e.g. Momentum, Adam Beta).
    assignment_map = {}
    resnet_scope = _get_resnet_scope()
    for var in contrib_framework.get_variables(
        scope=resnet_scope, collection=tf.GraphKeys.TRAINABLE_VARIABLES):
      if 'dense' not in var.op.name:
        # Remove the parent scope prefix.
        name_in_ckpt = var.op.name.replace(resnet_scope, 'resnet_model/')
        assignment_map[name_in_ckpt] = var
    tf.train.init_from_checkpoint(pretrain_checkpoint, assignment_map)
  if return_intermediate_values:
    return resnet_endpoints(model)
  else:
    return final_dense
Example #4
0
def resnet_model(images,
                 is_training,
                 num_classes,
                 resnet_size=50,
                 weight_decay=None,
                 kernel_size=7,
                 num_filters=64,
                 return_intermediate_values=False,
                 film_generator_fn=None,
                 film_generator_input=None,
                 pretrain_checkpoint=None):
    """Returns resnet model, optionally returning intermediate endpoint tensors.

  Args:
    images: A Tensor representing a batch [N,H,W,C] of input images.
    is_training: A boolean. Set to True to add operations required only when
      training the classifier.
    num_classes: Dimensionality of output logits emitted by final dense layer.
    resnet_size: Size of resnet. One of [18, 34, 50, 101, 152, 200].
    weight_decay: L2 weight regularizer.
    kernel_size: Size of the convolution kernels used in the resnet model.
    num_filters: Number of filters used.
    return_intermediate_values: If True, returns a dictionary of output and
      intermediate activation values.
    film_generator_fn: Callable that returns a List (for each block layer) of
      Lists (per ResNet block) of FiLM conditioning vectors.
    film_generator_input: Embedding tensor to be passed to film_generator_fn.
    pretrain_checkpoint: String to initialize model weights from. Does *NOT*
      initialize final logits layer. ResNet checkpoints can be found here:
      https://github.com/tensorflow/models/tree/master/official/r1/resnet.
  """
    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
        bottleneck = False
    else:
        bottleneck = True
    model = resnet_lib.Model(resnet_size=resnet_size,
                             bottleneck=bottleneck,
                             num_classes=num_classes,
                             num_filters=num_filters,
                             kernel_size=kernel_size,
                             conv_stride=2,
                             first_pool_size=3,
                             first_pool_stride=2,
                             block_sizes=_get_block_sizes(resnet_size),
                             block_strides=[1, 2, 2, 2],
                             resnet_version=resnet_lib.DEFAULT_VERSION,
                             data_format='channels_last',
                             weight_decay=weight_decay,
                             dtype=resnet_lib.DEFAULT_DTYPE)
    final_dense = model(images, is_training, film_generator_fn,
                        film_generator_input)
    if pretrain_checkpoint:
        # Initialize variables in ResNet, excluding the final dense layer and any
        # optimization-specific variables (e.g. Momentum, Adam Beta).
        # When initializing on TPUs, use AbstractT2RModel.init_from_checkpoint_fn.
        resnet_init_from_checkpoint_fn(pretrain_checkpoint)
    if return_intermediate_values:
        return resnet_endpoints(model)
    else:
        return final_dense