def testNoShuffleDeterministic(self): problem = algorithmic.TinyAlgo() dataset = problem.dataset(mode=tf.estimator.ModeKeys.TRAIN, data_dir=algorithmic.TinyAlgo.data_dir, shuffle_files=False) tensor1 = dataset.make_one_shot_iterator().get_next()["targets"] tensor2 = dataset.make_one_shot_iterator().get_next()["targets"] with tf.Session() as sess: self.assertTrue(assert_tensors_equal(sess, tensor1, tensor2, 20))
def testExperimentWithClass(self): exp_fn = trainer_lib.create_experiment_fn( "transformer", algorithmic.TinyAlgo(), algorithmic.TinyAlgo.data_dir, train_steps=1, eval_steps=1, min_eval_frequency=1, use_tpu=False) run_config = trainer_lib.create_run_config( model_dir=algorithmic.TinyAlgo.data_dir, num_gpus=0, use_tpu=False) hparams = registry.hparams("transformer_tiny_tpu") exp = exp_fn(run_config, hparams) exp.test()
def testDataFilenames(self): problem = algorithmic.TinyAlgo() num_shards = 10 shuffled = False data_dir = "/tmp" # Test training_filepaths and data_filepaths give the same list on # appropriate arguments. self.assertAllEqual( problem.training_filepaths(data_dir, num_shards, shuffled), problem.data_filepaths(problem_module.DatasetSplit.TRAIN, data_dir, num_shards, shuffled)) self.assertAllEqual( problem.dev_filepaths(data_dir, num_shards, shuffled), problem.data_filepaths(problem_module.DatasetSplit.EVAL, data_dir, num_shards, shuffled)) self.assertAllEqual( problem.test_filepaths(data_dir, num_shards, shuffled), problem.data_filepaths(problem_module.DatasetSplit.TEST, data_dir, num_shards, shuffled))