def warp_backward(self, image):
     r'''
     Applies this transformation in the backward direction to the given
     image using tri-linear interpolation
     '''
     if len(image.shape) == 3:
         if image.dtype is np.dtype('int32'):
             warped = np.array(
                 tf.warp_discrete_volumeNN(
                     image, self.backward, self.affine_post_inv,
                     self.affine_pre_inv))
         elif image.dtype is np.dtype('float64'):
             warped = np.array(
                 tf.warp_volume(
                     image, self.backward, self.affine_post_inv,
                     self.affine_pre_inv))
     else:
         if image.dtype is np.dtype('int32'):
             warped = np.array(
                 tf.warp_discrete_imageNN(
                     image, self.backward, self.affine_post_inv,
                     self.affine_pre_inv))
         elif image.dtype is np.dtype('float64'):
             warped = np.array(
                 tf.warp_image(
                     image, self.backward, self.affine_post_inv,
                     self.affine_pre_inv))
     return warped
def estimateNewMonomodalDiffeomorphicField2D(moving, fixed, lambdaParam,
                                             maxOuterIter,
                                             previousDisplacement,
                                             previousDisplacementInverse):
    '''
    Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1,
    as opposed as lambdaParam=150 used in the multimodal case
    '''
    innerTolerance = 1e-4
    displacement = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64)
    gradientField = np.empty(shape=(moving.shape) + (2, ), dtype=np.float64)
    totalDisplacement = np.zeros(shape=(moving.shape) + (2, ),
                                 dtype=np.float64)
    totalDisplacementInverse = np.zeros(shape=(moving.shape) + (2, ),
                                        dtype=np.float64)
    if (previousDisplacement != None):
        totalDisplacement[...] = previousDisplacement
        totalDisplacementInverse[...] = previousDisplacementInverse
    outerIter = 0
    framesToCapture = 5
    maxOuterIter = framesToCapture * (
        (maxOuterIter + framesToCapture - 1) / framesToCapture)
    itersPerCapture = maxOuterIter / framesToCapture
    plt.figure()
    while (outerIter < maxOuterIter):
        outerIter += 1
        print 'Outer iter:', outerIter
        warped = np.array(tf.warp_image(moving, totalDisplacement, None))
        if ((outerIter == 1) or (outerIter % itersPerCapture == 0)):
            plt.subplot(1, framesToCapture + 1,
                        1 + outerIter / itersPerCapture)
            rcommon.overlayImages(warped, fixed, False)
            plt.title('Iter:' + str(outerIter - 1))
        sigmaField = np.ones_like(warped, dtype=np.float64)
        deltaField = fixed - warped
        gradientField[:, :, 0], gradientField[:, :, 1] = sp.gradient(warped)
        maxVariation = 1 + innerTolerance
        innerIter = 0
        displacement[...] = 0
        maxInnerIter = 200
        while ((maxVariation > innerTolerance) and (innerIter < maxInnerIter)):
            innerIter += 1
            maxVariation = tf.iterateDisplacementField2DCYTHON(
                deltaField, sigmaField, gradientField, lambdaParam,
                displacement, None)
        #maxDisplacement=np.max(np.abs(displacement))
        expd, invexpd = tf.vector_field_exponential(displacement, True)
        totalDisplacement, stats = tf.compose_vector_fields(
            displacement, totalDisplacement)
        #totalDisplacement=np.array(totalDisplacement)
        totalDisplacementInverse, stats = tf.compose_vector_fields(
            totalDisplacementInverse, invexpd)
        #totalDisplacementInverse=np.array(totalDisplacementInverse)
        #if(maxDisplacement<outerTolerance):
        #break
    print "Iter: ", innerIter, "Max variation:", maxVariation
    return totalDisplacement, totalDisplacementInverse
Example #3
0
def test_optimizer_monomodal_2d():
    r'''
    Classical Circle-To-C experiment for 2D Monomodal registration
    '''
    fname_moving = 'data/circle.png'
    fname_fixed = 'data/C.png'
    moving = plt.imread(fname_moving)
    fixed = plt.imread(fname_fixed)
    moving = moving[:, :, 0].astype(np.float64)
    fixed = fixed[:, :, 0].astype(np.float64)
    moving = np.copy(moving, order='C')
    fixed = np.copy(fixed, order='C')
    moving = (moving - moving.min()) / (moving.max() - moving.min())
    fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min())
    ################Configure and run the Optimizer#####################
    max_iter = [i for i in [20, 100, 100, 100]]
    similarity_metric = SSDMetric(2, {
        'symmetric': True,
        'lambda': 5.0,
        'stepType': SSDMetric.GAUSS_SEIDEL_STEP
    })
    optimizer_parameters = {
        'max_iter': max_iter,
        'inversion_iter': 40,
        'inversion_tolerance': 1e-3,
        'report_status': True
    }
    update_rule = UpdateRule.Composition()
    registration_optimizer = SymmetricRegistrationOptimizer(
        fixed, moving, None, None, similarity_metric, update_rule,
        optimizer_parameters)
    registration_optimizer.optimize()
    #######################show results#################################
    displacement = registration_optimizer.get_forward()
    direct_inverse = registration_optimizer.get_backward()
    moving_to_fixed = np.array(tf.warp_image(moving, displacement))
    fixed_to_moving = np.array(tf.warp_image(fixed, direct_inverse))
    rcommon.overlayImages(moving_to_fixed, fixed, True)
    rcommon.overlayImages(fixed_to_moving, moving, True)
    direct_residual, stats = tf.compose_vector_fields(displacement,
                                                      direct_inverse)
    direct_residual = np.array(direct_residual)
    rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual,
                               'inv-direct', 7)
def test_optimizer_monomodal_2d():
    r'''
    Classical Circle-To-C experiment for 2D Monomodal registration
    '''
    fname_moving = 'data/circle.png'
    fname_fixed = 'data/C.png'
    moving = plt.imread(fname_moving)
    fixed = plt.imread(fname_fixed)
    moving = moving[:, :, 0].astype(np.float64)
    fixed = fixed[:, :, 0].astype(np.float64)
    moving = np.copy(moving, order = 'C')
    fixed = np.copy(fixed, order = 'C')
    moving = (moving-moving.min())/(moving.max() - moving.min())
    fixed = (fixed-fixed.min())/(fixed.max() - fixed.min())
    ################Configure and run the Optimizer#####################
    max_iter = [i for i in [20, 100, 100, 100]]
    similarity_metric = SSDMetric(2, {'symmetric':True,
                                'lambda':5.0,
                                'stepType':SSDMetric.GAUSS_SEIDEL_STEP})
    optimizer_parameters = {
        'max_iter':max_iter,
        'inversion_iter':40,
        'inversion_tolerance':1e-3,
        'report_status':True}
    update_rule = UpdateRule.Composition()
    registration_optimizer = SymmetricRegistrationOptimizer(fixed, moving,
                                                         None, None,
                                                         similarity_metric,
                                                         update_rule, optimizer_parameters)
    registration_optimizer.optimize()
    #######################show results#################################
    displacement = registration_optimizer.get_forward()
    direct_inverse = registration_optimizer.get_backward()
    moving_to_fixed = np.array(tf.warp_image(moving, displacement))
    fixed_to_moving = np.array(tf.warp_image(fixed, direct_inverse))
    rcommon.overlayImages(moving_to_fixed, fixed, True)
    rcommon.overlayImages(fixed_to_moving, moving, True)
    direct_residual, stats = tf.compose_vector_fields(displacement,
                                                     direct_inverse)
    direct_residual = np.array(direct_residual)
    rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual,
                               'inv-direct', 7)
def test_optimizer_monomodal_2d():
    r"""
    Classical Circle-To-C experiment for 2D Monomodal registration
    """
    fname_moving = "data/circle.png"
    fname_fixed = "data/C.png"
    nib_moving = plt.imread(fname_moving)
    nib_fixed = plt.imread(fname_fixed)
    moving = nib_moving[:, :, 0].astype(np.float64)
    fixed = nib_fixed[:, :, 1].astype(np.float64)
    moving = np.copy(moving, order="C")
    fixed = np.copy(fixed, order="C")
    moving = (moving - moving.min()) / (moving.max() - moving.min())
    fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min())
    ################Configure and run the Optimizer#####################
    max_iter = [i for i in [25, 100, 100, 100]]
    similarity_metric = SSDMetric({"lambda": 5.0, "max_inner_iter": 50, "step_type": SSDMetric.GAUSS_SEIDEL_STEP})
    update_rule = UpdateRule.Composition()
    optimizer_parameters = {
        "max_iter": max_iter,
        "inversion_iter": 40,
        "inversion_tolerance": 1e-3,
        "report_status": True,
    }
    registration_optimizer = AsymmetricRegistrationOptimizer(
        fixed, moving, None, None, similarity_metric, update_rule, optimizer_parameters
    )
    registration_optimizer.optimize()
    #######################show results#################################
    displacement = registration_optimizer.get_forward()
    direct_inverse = registration_optimizer.get_backward()
    moving_to_fixed = np.array(tf.warp_image(moving, displacement))
    fixed_to_moving = np.array(tf.warp_image(fixed, direct_inverse))
    rcommon.overlayImages(moving_to_fixed, fixed, True)
    rcommon.overlayImages(fixed_to_moving, moving, True)
    direct_residual, stats = tf.compose_vector_fields(displacement, direct_inverse)
    direct_residual = np.array(direct_residual)
    rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual, "inv-direct", 7)
def estimateNewMonomodalDiffeomorphicField2D(moving, fixed, lambdaParam, maxOuterIter, previousDisplacement, previousDisplacementInverse):
    '''
    Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1,
    as opposed as lambdaParam=150 used in the multimodal case
    '''
    innerTolerance=1e-4
    displacement     =np.zeros(shape=(moving.shape)+(2,), dtype=np.float64)
    gradientField    =np.empty(shape=(moving.shape)+(2,), dtype=np.float64)
    totalDisplacement=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64)
    totalDisplacementInverse=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64)
    if(previousDisplacement!=None):
        totalDisplacement[...]=previousDisplacement
        totalDisplacementInverse[...]=previousDisplacementInverse
    outerIter=0
    framesToCapture=5
    maxOuterIter=framesToCapture*((maxOuterIter+framesToCapture-1)/framesToCapture)
    itersPerCapture=maxOuterIter/framesToCapture
    plt.figure()
    while(outerIter<maxOuterIter):
        outerIter+=1
        print 'Outer iter:', outerIter
        warped=np.array(tf.warp_image(moving, totalDisplacement, None))
        if((outerIter==1) or (outerIter%itersPerCapture==0)):
            plt.subplot(1,framesToCapture+1, 1+outerIter/itersPerCapture)
            rcommon.overlayImages(warped, fixed, False)
            plt.title('Iter:'+str(outerIter-1))
        sigmaField=np.ones_like(warped, dtype=np.float64)
        deltaField=fixed-warped
        gradientField[:,:,0], gradientField[:,:,1]=sp.gradient(warped)
        maxVariation=1+innerTolerance
        innerIter=0
        displacement[...]=0
        maxInnerIter=200
        while((maxVariation>innerTolerance)and(innerIter<maxInnerIter)):
            innerIter+=1
            maxVariation=tf.iterateDisplacementField2DCYTHON(deltaField, sigmaField, gradientField,  lambdaParam, displacement, None)
        #maxDisplacement=np.max(np.abs(displacement))
        expd, invexpd=tf.vector_field_exponential(displacement, True)
        totalDisplacement, stats=tf.compose_vector_fields(displacement, totalDisplacement)
        #totalDisplacement=np.array(totalDisplacement)
        totalDisplacementInverse, stats=tf.compose_vector_fields(totalDisplacementInverse, invexpd)
        #totalDisplacementInverse=np.array(totalDisplacementInverse)
        #if(maxDisplacement<outerTolerance):
            #break
    print "Iter: ",innerIter, "Max variation:",maxVariation
    return totalDisplacement, totalDisplacementInverse
Example #7
0
def estimateNewMonomodalSyNField2D(moving, fixed, fWarp, fInv, mWarp, mInv,
                                   lambdaParam, maxOuterIter):
    '''
    Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1,
    as opposed as lambdaParam=150 used in the multimodal case
    '''
    innerTolerance = 1e-4
    outerTolerance = 1e-3

    if (mWarp != None):
        totalM = mWarp
        totalMInv = mInv
    else:
        totalM = np.zeros(shape=(fixed.shape) + (2, ), dtype=np.float64)
        totalMInv = np.zeros(shape=(fixed.shape) + (2, ), dtype=np.float64)
    if (fWarp != None):
        totalF = fWarp
        totalFInv = fInv
    else:
        totalF = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64)
        totalFInv = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64)
    outerIter = 0
    framesToCapture = 5
    maxOuterIter = framesToCapture * (
        (maxOuterIter + framesToCapture - 1) / framesToCapture)
    itersPerCapture = maxOuterIter / framesToCapture
    plt.figure()
    while (outerIter < maxOuterIter):
        outerIter += 1
        print 'Outer iter:', outerIter
        wmoving = np.array(tf.warp_image(moving, totalMInv))
        wfixed = np.array(tf.warp_image(fixed, totalFInv))
        if ((outerIter == 1) or (outerIter % itersPerCapture == 0)):
            plt.subplot(1, framesToCapture + 1,
                        1 + outerIter / itersPerCapture)
            rcommon.overlayImages(wmoving, wfixed, False)
            plt.title('Iter:' + str(outerIter - 1))
        #Compute forward update
        sigmaField = np.ones_like(wmoving, dtype=np.float64)
        deltaField = wfixed - wmoving
        movingGradient = np.empty(shape=(wmoving.shape) + (2, ),
                                  dtype=np.float64)
        movingGradient[:, :, 0], movingGradient[:, :, 1] = sp.gradient(wmoving)
        maxVariation = 1 + innerTolerance
        innerIter = 0
        fw = np.zeros(shape=(fixed.shape) + (2, ), dtype=np.float64)
        maxInnerIter = 1000
        while ((maxVariation > innerTolerance) and (innerIter < maxInnerIter)):
            innerIter += 1
            maxVariation = tf.iterateDisplacementField2DCYTHON(
                deltaField, sigmaField, movingGradient, lambdaParam, fw, None)
        #fw*=0.5
        totalF, stats = tf.compose_vector_fields(fw, totalF)
        totalF = np.array(totalF)
        meanDispF = np.mean(np.abs(fw))
        #Compute backward field
        sigmaField = np.ones_like(wfixed, dtype=np.float64)
        deltaField = wmoving - wfixed
        fixedGradient = np.empty(shape=(wfixed.shape) + (2, ),
                                 dtype=np.float64)
        fixedGradient[:, :, 0], fixedGradient[:, :, 1] = sp.gradient(wfixed)
        maxVariation = 1 + innerTolerance
        innerIter = 0
        mw = np.zeros(shape=(fixed.shape) + (2, ), dtype=np.float64)
        maxInnerIter = 1000
        while ((maxVariation > innerTolerance) and (innerIter < maxInnerIter)):
            innerIter += 1
            maxVariation = tf.iterateDisplacementField2DCYTHON(
                deltaField, sigmaField, fixedGradient, lambdaParam, mw, None)
        #mw*=0.5
        totalM, stats = tf.compose_vector_fields(mw, totalM)
        totalM = np.array(totalM)
        meanDispM = np.mean(np.abs(mw))
        totalFInv = np.array(
            tf.invert_vector_field_fixed_point(totalF, None, 20, 1e-3, None))
        totalMInv = np.array(
            tf.invert_vector_field_fixed_point(totalM, None, 20, 1e-3, None))
        totalF = np.array(
            tf.invert_vector_field_fixed_point(totalFInv, None, 20, 1e-3,
                                               None))
        totalM = np.array(
            tf.invert_vector_field_fixed_point(totalMInv, None, 20, 1e-3,
                                               None))
        #        totalFInv=np.array(tf.invert_vector_field(totalF, 0.75, 100, 1e-6))
        #        totalMInv=np.array(tf.invert_vector_field(totalM, 0.75, 100, 1e-6))
        #        totalF=np.array(tf.invert_vector_field(totalFInv, 0.75, 100, 1e-6))
        #        totalM=np.array(tf.invert_vector_field(totalMInv, 0.75, 100, 1e-6))
        if (meanDispM + meanDispF < 2 * outerTolerance):
            break
    print "Iter: ", innerIter, "Mean lateral displacement:", 0.5 * (
        meanDispM + meanDispF), "Max variation:", maxVariation
    return totalF, totalFInv, totalM, totalMInv
Example #8
0
def estimateNewMonomodalSyNField2D(moving, fixed, fWarp, fInv, mWarp, mInv, lambdaParam, maxOuterIter):
    '''
    Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1,
    as opposed as lambdaParam=150 used in the multimodal case
    '''
    innerTolerance=1e-4
    outerTolerance=1e-3
    
    if(mWarp!=None):
        totalM=mWarp
        totalMInv=mInv
    else:
        totalM=np.zeros(shape=(fixed.shape)+(2,), dtype=np.float64)
        totalMInv=np.zeros(shape=(fixed.shape)+(2,), dtype=np.float64)
    if(fWarp!=None):
        totalF=fWarp
        totalFInv=fInv
    else:
        totalF=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64)
        totalFInv=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64)
    outerIter=0
    framesToCapture=5
    maxOuterIter=framesToCapture*((maxOuterIter+framesToCapture-1)/framesToCapture)
    itersPerCapture=maxOuterIter/framesToCapture
    plt.figure()
    while(outerIter<maxOuterIter):
        outerIter+=1
        print 'Outer iter:', outerIter
        wmoving=np.array(tf.warp_image(moving, totalMInv))
        wfixed=np.array(tf.warp_image(fixed, totalFInv))
        if((outerIter==1) or (outerIter%itersPerCapture==0)):
            plt.subplot(1,framesToCapture+1, 1+outerIter/itersPerCapture)
            rcommon.overlayImages(wmoving, wfixed, False)
            plt.title('Iter:'+str(outerIter-1))
        #Compute forward update
        sigmaField=np.ones_like(wmoving, dtype=np.float64)
        deltaField=wfixed-wmoving
        movingGradient    =np.empty(shape=(wmoving.shape)+(2,), dtype=np.float64)
        movingGradient[:,:,0], movingGradient[:,:,1]=sp.gradient(wmoving)
        maxVariation=1+innerTolerance
        innerIter=0
        fw     =np.zeros(shape=(fixed.shape)+(2,), dtype=np.float64)
        maxInnerIter=1000
        while((maxVariation>innerTolerance)and(innerIter<maxInnerIter)):
            innerIter+=1
            maxVariation=tf.iterateDisplacementField2DCYTHON(deltaField, sigmaField, movingGradient,  lambdaParam, fw, None)
        #fw*=0.5
        totalF, stats=tf.compose_vector_fields(fw, totalF)
        totalF=np.array(totalF);
        meanDispF=np.mean(np.abs(fw))
        #Compute backward field
        sigmaField=np.ones_like(wfixed, dtype=np.float64)
        deltaField=wmoving-wfixed
        fixedGradient    =np.empty(shape=(wfixed.shape)+(2,), dtype=np.float64)
        fixedGradient[:,:,0], fixedGradient[:,:,1]=sp.gradient(wfixed)
        maxVariation=1+innerTolerance
        innerIter=0
        mw     =np.zeros(shape=(fixed.shape)+(2,), dtype=np.float64)
        maxInnerIter=1000
        while((maxVariation>innerTolerance)and(innerIter<maxInnerIter)):
            innerIter+=1
            maxVariation=tf.iterateDisplacementField2DCYTHON(deltaField, sigmaField, fixedGradient,  lambdaParam, mw, None)
        #mw*=0.5
        totalM, stats=tf.compose_vector_fields(mw, totalM)
        totalM=np.array(totalM);
        meanDispM=np.mean(np.abs(mw))
        totalFInv=np.array(tf.invert_vector_field_fixed_point(totalF, None, 20, 1e-3, None))
        totalMInv=np.array(tf.invert_vector_field_fixed_point(totalM, None, 20, 1e-3, None))
        totalF=np.array(tf.invert_vector_field_fixed_point(totalFInv, None, 20, 1e-3, None))
        totalM=np.array(tf.invert_vector_field_fixed_point(totalMInv, None, 20, 1e-3, None))
#        totalFInv=np.array(tf.invert_vector_field(totalF, 0.75, 100, 1e-6))
#        totalMInv=np.array(tf.invert_vector_field(totalM, 0.75, 100, 1e-6))
#        totalF=np.array(tf.invert_vector_field(totalFInv, 0.75, 100, 1e-6))
#        totalM=np.array(tf.invert_vector_field(totalMInv, 0.75, 100, 1e-6))
        if(meanDispM+meanDispF<2*outerTolerance):
            break
    print "Iter: ",innerIter, "Mean lateral displacement:", 0.5*(meanDispM+meanDispF), "Max variation:",maxVariation
    return totalF, totalFInv, totalM, totalMInv
Example #9
0
def test_optimizer_multimodal_2d(lambda_param):
    r'''
    Registers one of the mid-slices (axial, coronal or sagital) of each input
    volume (the volumes are expected to be from diferent modalities and
    should already be affine-registered, for example Brainweb t1 vs t2)
    '''
    fname_moving = 'data/t2/IBSR_t2template_to_01.nii.gz'
    fname_fixed = 'data/t1/IBSR_template_to_01.nii.gz'
    #    fnameMoving = 'data/circle.png'
    #    fnameFixed = 'data/C.png'
    nifti = True
    if nifti:
        nib_moving = nib.load(fname_moving)
        nib_fixed = nib.load(fname_fixed)
        moving = nib_moving.get_data().squeeze().astype(np.float64)
        fixed = nib_fixed.get_data().squeeze().astype(np.float64)
        moving = np.copy(moving, order='C')
        fixed = np.copy(fixed, order='C')
        shape_moving = moving.shape
        shape_fixed = fixed.shape
        moving = moving[:, shape_moving[1] // 2, :].copy()
        fixed = fixed[:, shape_fixed[1] // 2, :].copy()
        moving = (moving - moving.min()) / (moving.max() - moving.min())
        fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min())
    else:
        nib_moving = plt.imread(fname_moving)
        nib_fixed = plt.imread(fname_fixed)
        moving = nib_moving[:, :, 0].astype(np.float64)
        fixed = nib_fixed[:, :, 1].astype(np.float64)
        moving = np.copy(moving, order='C')
        fixed = np.copy(fixed, order='C')
        moving = (moving - moving.min()) / (moving.max() - moving.min())
        fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min())
    max_iter = [i for i in [25, 50, 100]]
    similarity_metric = EMMetric(
        2, {
            'symmetric': True,
            'lambda': lambda_param,
            'stepType': SSDMetric.GAUSS_SEIDEL_STEP,
            'q_levels': 256,
            'max_inner_iter': 20,
            'use_double_gradient': True,
            'max_step_length': 0.25
        })
    optimizer_parameters = {
        'max_iter': max_iter,
        'inversion_iter': 20,
        'inversion_tolerance': 1e-3,
        'report_status': True
    }
    update_rule = UpdateRule.Composition()
    print('Generating synthetic field...')
    #----apply synthetic deformation field to fixed image
    ground_truth = rcommon.createDeformationField2D_type2(
        fixed.shape[0], fixed.shape[1], 8)
    warped_fixed = rcommon.warpImage(fixed, ground_truth)
    print('Registering T2 (template) to deformed T1 (template)...')
    plt.figure()
    rcommon.overlayImages(warped_fixed, moving, False)
    registration_optimizer = SymmetricRegistrationOptimizer(
        warped_fixed, moving, None, None, similarity_metric, update_rule,
        optimizer_parameters)
    registration_optimizer.optimize()
    #######################show results#################################
    displacement = registration_optimizer.get_forward()
    direct_inverse = registration_optimizer.get_backward()
    moving_to_fixed = np.array(tf.warp_image(moving, displacement))
    fixed_to_moving = np.array(tf.warp_image(warped_fixed, direct_inverse))
    rcommon.overlayImages(moving_to_fixed, fixed_to_moving, True)
    direct_residual, stats = tf.compose_vector_fields(displacement,
                                                      direct_inverse)
    direct_residual = np.array(direct_residual)
    rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual,
                               'inv-direct', 7)

    residual = ((displacement - ground_truth))**2
    mean_displacement_error = np.sqrt(residual.sum(2) *
                                      (warped_fixed > 0)).mean()
    stdev_displacement_error = np.sqrt(residual.sum(2) *
                                       (warped_fixed > 0)).std()
    print('Mean displacement error: %0.6f (%0.6f)' %
          (mean_displacement_error, stdev_displacement_error))
def test_optimizer_multimodal_2d(lambda_param):
    r"""
    Registers one of the mid-slices (axial, coronal or sagital) of each input
    volume (the volumes are expected to be from diferent modalities and
    should already be affine-registered, for example Brainweb t1 vs t2)
    """
    fname_moving = "data/t2/IBSR_t2template_to_01.nii.gz"
    fname_fixed = "data/t1/IBSR_template_to_01.nii.gz"
    #    fname_moving = 'data/circle.png'
    #    fname_fixed = 'data/C.png'
    nifti = True
    if nifti:
        nib_moving = nib.load(fname_moving)
        nib_fixed = nib.load(fname_fixed)
        moving = nib_moving.get_data().squeeze().astype(np.float64)
        fixed = nib_fixed.get_data().squeeze().astype(np.float64)
        moving = np.copy(moving, order="C")
        fixed = np.copy(fixed, order="C")
        moving_shape = moving.shape
        fixed_shape = fixed.shape
        moving = moving[:, moving_shape[1] // 2, :].copy()
        fixed = fixed[:, fixed_shape[1] // 2, :].copy()
        #        moving = histeq(moving)
        #        fixed = histeq(fixed)
        moving = (moving - moving.min()) / (moving.max() - moving.min())
        fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min())
    else:
        nib_moving = plt.imread(fname_moving)
        nib_fixed = plt.imread(fname_fixed)
        moving = nib_moving[:, :, 0].astype(np.float64)
        fixed = nib_fixed[:, :, 1].astype(np.float64)
        moving = np.copy(moving, order="C")
        fixed = np.copy(fixed, order="C")
        moving = (moving - moving.min()) / (moving.max() - moving.min())
        fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min())
    # max_iter = [i for i in [25,50,100,100]]
    max_iter = [i for i in [25, 50, 100]]
    similarity_metric = EMMetric(
        {
            "symmetric": True,
            "lambda": lambda_param,
            "step_type": SSDMetric.GAUSS_SEIDEL_STEP,
            "q_levels": 256,
            "max_inner_iter": 40,
            "use_double_gradient": True,
            "max_step_length": 0.25,
        }
    )
    optimizer_parameters = {
        "max_iter": max_iter,
        "inversion_iter": 40,
        "inversion_tolerance": 1e-3,
        "report_status": True,
    }
    update_rule = UpdateRule.Composition()
    print "Generating synthetic field..."
    # ----apply synthetic deformation field to fixed image
    ground_truth = rcommon.createDeformationField2D_type2(fixed.shape[0], fixed.shape[1], 8)
    warped_fixed = rcommon.warpImage(fixed, ground_truth)
    print "Registering T2 (template) to deformed T1 (template)..."
    plt.figure()
    rcommon.overlayImages(warped_fixed, moving, False)
    registration_optimizer = AsymmetricRegistrationOptimizer(
        warped_fixed, moving, None, None, similarity_metric, update_rule, optimizer_parameters
    )
    registration_optimizer.optimize()
    #######################show results#################################
    displacement = registration_optimizer.get_forward()
    direct_inverse = registration_optimizer.get_backward()
    moving_to_fixed = np.array(tf.warp_image(moving, displacement))
    fixed_to_moving = np.array(tf.warp_image(warped_fixed, direct_inverse))
    rcommon.overlayImages(moving_to_fixed, fixed_to_moving, True)
    direct_residual, stats = tf.compose_vector_fields(displacement, direct_inverse)
    direct_residual = np.array(direct_residual)
    rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual, "inv-direct", 7)

    residual = ((displacement - ground_truth)) ** 2
    mean_error = np.sqrt(residual.sum(2) * (warped_fixed > 0)).mean()
    stdev_error = np.sqrt(residual.sum(2) * (warped_fixed > 0)).std()
    print "Mean displacement error: ", mean_error, "(", stdev_error, ")"
def test_optimizer_multimodal_2d(lambda_param):
    r'''
    Registers one of the mid-slices (axial, coronal or sagital) of each input
    volume (the volumes are expected to be from diferent modalities and
    should already be affine-registered, for example Brainweb t1 vs t2)
    '''
    fname_moving = 'data/t2/IBSR_t2template_to_01.nii.gz'
    fname_fixed = 'data/t1/IBSR_template_to_01.nii.gz'
#    fnameMoving = 'data/circle.png'
#    fnameFixed = 'data/C.png'
    nifti = True
    if nifti:
        nib_moving = nib.load(fname_moving)
        nib_fixed = nib.load(fname_fixed)
        moving = nib_moving.get_data().squeeze().astype(np.float64)
        fixed = nib_fixed.get_data().squeeze().astype(np.float64)
        moving = np.copy(moving, order = 'C')
        fixed = np.copy(fixed, order = 'C')
        shape_moving = moving.shape
        shape_fixed = fixed.shape
        moving = moving[:, shape_moving[1]//2, :].copy()
        fixed = fixed[:, shape_fixed[1]//2, :].copy()
        moving = (moving-moving.min())/(moving.max()-moving.min())
        fixed = (fixed-fixed.min())/(fixed.max()-fixed.min())
    else:
        nib_moving = plt.imread(fname_moving)
        nib_fixed = plt.imread(fname_fixed)
        moving = nib_moving[:, :, 0].astype(np.float64)
        fixed = nib_fixed[:, :, 1].astype(np.float64)
        moving = np.copy(moving, order = 'C')
        fixed = np.copy(fixed, order = 'C')
        moving = (moving-moving.min())/(moving.max() - moving.min())
        fixed = (fixed-fixed.min())/(fixed.max() - fixed.min())
    max_iter = [i for i in [25, 50, 100]]
    similarity_metric = EMMetric(2, {'symmetric':True,
                               'lambda':lambda_param,
                               'stepType':SSDMetric.GAUSS_SEIDEL_STEP,
                               'q_levels':256,
                               'max_inner_iter':20,
                               'use_double_gradient':True,
                               'max_step_length':0.25})
    optimizer_parameters = {
        'max_iter':max_iter,
        'inversion_iter':20,
        'inversion_tolerance':1e-3,
        'report_status':True}
    update_rule = UpdateRule.Composition()
    print('Generating synthetic field...')
    #----apply synthetic deformation field to fixed image
    ground_truth = rcommon.createDeformationField2D_type2(fixed.shape[0],
                                              fixed.shape[1], 8)
    warped_fixed = rcommon.warpImage(fixed, ground_truth)
    print('Registering T2 (template) to deformed T1 (template)...')
    plt.figure()
    rcommon.overlayImages(warped_fixed, moving, False)
    registration_optimizer = SymmetricRegistrationOptimizer(warped_fixed,
                                                            moving,
                                                            None, None,
                                                            similarity_metric,
                                                            update_rule,
                                                            optimizer_parameters)
    registration_optimizer.optimize()
    #######################show results#################################
    displacement = registration_optimizer.get_forward()
    direct_inverse = registration_optimizer.get_backward()
    moving_to_fixed = np.array(tf.warp_image(moving, displacement))
    fixed_to_moving = np.array(tf.warp_image(warped_fixed, direct_inverse))
    rcommon.overlayImages(moving_to_fixed, fixed_to_moving, True)
    direct_residual, stats = tf.compose_vector_fields(displacement,
                                                     direct_inverse)
    direct_residual = np.array(direct_residual)
    rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual,
                               'inv-direct', 7)

    residual = ((displacement-ground_truth))**2
    mean_displacement_error = np.sqrt(residual.sum(2)*(warped_fixed>0)).mean()
    stdev_displacement_error = np.sqrt(residual.sum(2)*(warped_fixed>0)).std()
    print('Mean displacement error: %0.6f (%0.6f)'%
        (mean_displacement_error, stdev_displacement_error))