Example #1
0
def test_equality():
    assert Tensor.from_lol([0, 2, 0],
                           format='d') == Tensor.from_lol([0, 2, 0],
                                                          format='s')
    assert Tensor.from_lol([0, 1, 0], format='d') != Tensor.from_lol(
        [0, 2, 0], format='s')
    assert Tensor.from_lol([0, 1, 0], format='d') != 1
Example #2
0
def test_matrix_multiply(a, b, c):
    a = Tensor.from_lol(a)
    b = Tensor.from_lol(b)
    if isinstance(c, list):
        c = Tensor.from_lol(c)

    actual = a @ b
    assert actual == c
Example #3
0
def test_subtract(a, b, c):
    if isinstance(a, list):
        a = Tensor.from_lol(a)
    if isinstance(b, list):
        b = Tensor.from_lol(b)
    expected = Tensor.from_lol(c)

    actual = a - b
    assert actual == expected
Example #4
0
def test_multiply(a, b, c):
    if isinstance(a, list):
        a = Tensor.from_lol(a)
    if isinstance(b, list):
        b = Tensor.from_lol(b)
    expected = Tensor.from_lol(c)

    actual = a * b
    assert actual == expected
Example #5
0
def test_binary_mismatched_dimensions():
    a = Tensor.from_lol([3, 2, 5])
    b = Tensor.from_lol([1, 2, 0, 4])

    with pytest.raises(ValueError):
        _ = a + b

    with pytest.raises(ValueError):
        _ = a - b

    with pytest.raises(ValueError):
        _ = a * b
Example #6
0
def assert_same_as_dense(expression, format_out, **tensor_pairs):
    tensors_in_format = {
        name: Tensor.from_lol(data, format=format)
        for name, (data, format) in tensor_pairs.items()
    }
    tensors_as_dense = {
        name: Tensor.from_lol(data)
        for name, (data, _) in tensor_pairs.items()
    }

    actual = evaluate(expression, format_out, **tensors_in_format)
    expected = evaluate(expression,
                        ''.join('d' for c in format_out if c in ('d', 's')),
                        **tensors_as_dense)
    assert actual == expected
Example #7
0
def test_from_dense_lil_scalar():
    format = Format((), ())
    x = Tensor.from_lol(2.0, dimensions=(), format=format)

    assert x.order == 0
    assert x.dimensions == ()
    assert x.modes == ()
    assert x.mode_ordering == ()
    assert x.format == format
    assert x.to_dok() == {(): 2.0}
Example #8
0
def test_matrix_multiply_too_many_dimensions():
    a = Tensor.from_lol([3, 2, 5])
    b = Tensor.from_dok(
        {
            (0, 0, 0): 4.5,
            (1, 0, 1): 3.2,
            (1, 1, 2): -3.0,
            (0, 1, 1): 5.0,
        },
        dimensions=(3, 3, 3))

    with pytest.raises(ValueError):
        _ = a @ b
Example #9
0
def test_from_dense_lil():
    format = Format((Mode.dense, Mode.dense), (0, 1))
    x = Tensor.from_lol(
        [[0, -4.0, 4.5], [0, -3.5, 2.5]],
        dimensions=(2, 3),
        format=format,
    )

    assert x.order == 2
    assert x.dimensions == (2, 3)
    assert x.modes == (Mode.dense, Mode.dense)
    assert x.mode_ordering == (0, 1)
    assert x.format == format
    assert x.to_dok() == {
        (0, 1): -4.0,
        (0, 2): 4.5,
        (1, 1): -3.5,
        (1, 2): 2.5,
    }
Example #10
0
def test_copy_2(dense, format_in, format_out):
    a = Tensor.from_lol(dense, format=format_in)
    actual = evaluate('b(i,j) = a(i,j)', format_out, a=a)
    assert actual == a
Example #11
0
def test_figure_2a(format, indices, vals):
    data = [5, 1, 0, 0, 2, 0, 8, 0]
    a = Tensor.from_lol(data, dimensions=(8, ), format=format)

    assert a.taco_indices == indices
    assert a.taco_vals == vals
Example #12
0
def test_str_repr():
    # Just make sure these run
    a = Tensor.from_lol([0, 2, 1, 0])
    str(a)
    repr(a)
Example #13
0
def test_matrix_multiply_mismatched_dimensions():
    a = Tensor.from_lol([3, 2, 5])
    b = Tensor.from_lol([1, 2, 0, 4])

    with pytest.raises(ValueError):
        _ = a @ b
Example #14
0
def test_nonscalar_to_float():
    x = Tensor.from_lol([1, 2])
    with pytest.raises(ValueError):
        _ = float(x)
Example #15
0
def test_figure_5(format, indices, vals):
    data = [[6, 0, 9, 8], [0, 0, 0, 0], [5, 0, 0, 7]]
    A = Tensor.from_lol(data, dimensions=(3, 4), format=format)

    assert A.taco_indices == indices
    assert A.taco_vals == vals
Example #16
0
    return tensor;
}
"""

ffi = FFI()
ffi.include(tensor_cdefs)
ffi.cdef("""
taco_tensor_t create_tensor();
taco_tensor_t* create_pointer_to_tensor();
""")
ffi.set_source(
    'taco_kernel',
    taco_define_header + taco_type_header + source,
    extra_compile_args=['-Wno-unused-variable', '-Wno-unknown-pragmas'])

expected_tensor = Tensor.from_lol([[6, 0, 9, 8], [0, 0, 0, 0], [5, 0, 0, 7]],
                                  format='ds')

with tempfile.TemporaryDirectory() as temp_dir:
    # Lock because FFI.compile is not thread safe: https://foss.heptapod.net/pypy/cffi/-/issues/490
    with lock:
        # Create shared object in temporary directory
        lib_path = ffi.compile(tmpdir=temp_dir)

    # Load the shared object
    lib = ffi.dlopen(lib_path)


def test_take_ownership_of_tensor_on_returned_struct():
    cffi_tensor = lib.create_tensor()
    take_ownership_of_tensor_members(cffi_tensor)
    tensor = Tensor(cffi_tensor)