def inception_block_1b(X):
    X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name='inception_3b_3x3_conv1')(X)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_3x3_bn1')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
    X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3b_3x3_conv2')(X_3x3)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_3x3_bn2')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)

    X_5x5 = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3b_5x5_conv1')(X)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_5x5_bn1')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)
    X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
    X_5x5 = Conv2D(64, (5, 5), data_format='channels_first', name='inception_3b_5x5_conv2')(X_5x5)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_5x5_bn2')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)

    X_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3), data_format='channels_first')(X)
    X_pool = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3b_pool_conv')(X_pool)
    X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_pool_bn')(X_pool)
    X_pool = Activation('relu')(X_pool)
    X_pool = ZeroPadding2D(padding=(4, 4), data_format='channels_first')(X_pool)

    X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3b_1x1_conv')(X)
    X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_1x1_bn')(X_1x1)
    X_1x1 = Activation('relu')(X_1x1)

    inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)

    return inception
def inception_block_1a(X):
    """
    Implementation of an inception block
    """

    X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name='inception_3a_3x3_conv1')(X)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_3x3_bn1')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
    X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3a_3x3_conv2')(X_3x3)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_3x3_bn2')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)

    X_5x5 = Conv2D(16, (1, 1), data_format='channels_first', name='inception_3a_5x5_conv1')(X)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn1')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)
    X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
    X_5x5 = Conv2D(32, (5, 5), data_format='channels_first', name='inception_3a_5x5_conv2')(X_5x5)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn2')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3a_pool_conv')(X_pool)
    X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_pool_bn')(X_pool)
    X_pool = Activation('relu')(X_pool)
    X_pool = ZeroPadding2D(padding=((3, 4), (3, 4)), data_format='channels_first')(X_pool)

    X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3a_1x1_conv')(X)
    X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_1x1_bn')(X_1x1)
    X_1x1 = Activation('relu')(X_1x1)

    # CONCAT
    inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)

    return inception
def inception_block_1c(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                               layer='inception_3c_3x3',
                               cv1_out=128,
                               cv1_filter=(1, 1),
                               cv2_out=256,
                               cv2_filter=(3, 3),
                               cv2_strides=(2, 2),
                               padding=(1, 1))

    X_5x5 = fr_utils.conv2d_bn(X,
                               layer='inception_3c_5x5',
                               cv1_out=32,
                               cv1_filter=(1, 1),
                               cv2_out=64,
                               cv2_filter=(5, 5),
                               cv2_strides=(2, 2),
                               padding=(2, 2))

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception
Example #4
0
def _conv_block(inp, convs, do_skip=True):
    x = inp
    count = 0

    for conv in convs:
        if count == (len(convs) - 2) and do_skip:
            skip_connection = x
        count += 1

        if conv['stride'] > 1:
            x = ZeroPadding2D(((1, 0), (1, 0)))(
                x)  # unlike tensorflow darknet prefer left and top paddings
        x = Conv2D(
            conv['filter'],
            conv['kernel'],
            strides=conv['stride'],
            padding='valid' if conv['stride'] > 1 else
            'same',  # unlike tensorflow darknet prefer left and top paddings
            name='conv_' + str(conv['layer_idx']),
            use_bias=False if conv['bnorm'] else True)(x)
        if conv['bnorm']:
            x = BatchNormalization(epsilon=0.001,
                                   name='bnorm_' + str(conv['layer_idx']))(x)
        if conv['leaky']:
            x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x)

    return add([skip_connection, x]) if do_skip else x
def inception_block_3b(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                               layer='inception_5b_3x3',
                               cv1_out=96,
                               cv1_filter=(1, 1),
                               cv2_out=384,
                               cv2_filter=(3, 3),
                               cv2_strides=(1, 1),
                               padding=(1, 1))
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = fr_utils.conv2d_bn(X_pool,
                                layer='inception_5b_pool',
                                cv1_out=96,
                                cv1_filter=(1, 1))
    X_pool = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_pool)

    X_1x1 = fr_utils.conv2d_bn(X,
                               layer='inception_5b_1x1',
                               cv1_out=256,
                               cv1_filter=(1, 1))
    inception = concatenate([X_3x3, X_pool, X_1x1], axis=1)

    return inception
Example #6
0
from config_9x9 import ytransform, yinversetransform, myscale, myinverse

#custom errors
from add_func_9x9 import root_mean_squared_error, root_relative_mean_squared_error, mse_constraint, rmse_constraint
#else
from add_func_9x9 import constraint_violation, pricing_plotter, plotter_autoencoder

tf.compat.v1.keras.backend.set_floatx('float64')

NN1a = Sequential()
NN1a.add(InputLayer(input_shape=(
    Nparameters,
    1,
    1,
)))
NN1a.add(ZeroPadding2D(padding=(2, 2)))
NN1a.add(
    Conv2D(32, (3, 1),
           padding='valid',
           use_bias=True,
           strides=(1, 1),
           activation='elu'))  #X_train_trafo.shape[1:],activation='elu'))
NN1a.add(ZeroPadding2D(padding=(3, 1)))
NN1a.add(
    Conv2D(32, (2, 2),
           padding='valid',
           use_bias=True,
           strides=(1, 1),
           activation='elu'))
NN1a.add(
    Conv2D(32, (2, 2),
def InceptionModel(input_shape):
    """
    Implementation of the Inception model used for FaceNet
    
    Arguments:
    input_shape -- shape of the images of the dataset

    Returns:
    model -- a Model() instance in Keras
    """

    # Define the input as a tensor with shape input_shape
    X_input = Input(input_shape)

    # Zero-Padding
    X = ZeroPadding2D((3, 3))(X_input)

    # First Block
    X = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(X)
    X = BatchNormalization(axis=1, name='bn1')(X)
    X = Activation('relu')(X)

    # Zero-Padding + MAXPOOL
    X = ZeroPadding2D((1, 1))(X)
    X = MaxPooling2D((3, 3), strides=2)(X)

    # Second Block
    X = Conv2D(64, (1, 1), strides=(1, 1), name='conv2')(X)
    X = BatchNormalization(axis=1, epsilon=0.00001, name='bn2')(X)
    X = Activation('relu')(X)

    # Zero-Padding + MAXPOOL
    X = ZeroPadding2D((1, 1))(X)

    # Second Block
    X = Conv2D(192, (3, 3), strides=(1, 1), name='conv3')(X)
    X = BatchNormalization(axis=1, epsilon=0.00001, name='bn3')(X)
    X = Activation('relu')(X)

    # Zero-Padding + MAXPOOL
    X = ZeroPadding2D((1, 1))(X)
    X = MaxPooling2D(pool_size=3, strides=2)(X)

    # Inception 1: a/b/c
    X = inception_block_1a(X)
    X = inception_block_1b(X)
    X = inception_block_1c(X)

    # Inception 2: a/b
    X = inception_block_2a(X)
    X = inception_block_2b(X)

    # Inception 3: a/b
    X = inception_block_3a(X)
    X = inception_block_3b(X)

    # Top layer
    X = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), data_format='channels_first')(X)
    X = Flatten()(X)
    X = Dense(128, name='dense_layer')(X)

    # L2 normalization
    X = Lambda(lambda x: K.l2_normalize(x, axis=1))(X)

    # Create model instance
    model = Model(inputs=X_input, outputs=X, name='FaceRecoModel')

    return model