Example #1
0
def get_available_gpus():
    """Get the list of usable GPUs"""
    with Session(config=ConfigProto(gpu_options=GPUOptions(
            per_process_gpu_memory_fraction=0.01, allow_growth=True))) as sess:
        tf.logging.set_verbosity(tf.logging.WARN)
        local_device_protos = device_lib.list_local_devices()

        devs = [x.name for x in local_device_protos if x.device_type == 'GPU']
    return devs
Example #2
0
def parallel_gpu_jobs(allow_growth=True, fraction=.5):
    '''Sets the max used memory as a fraction for tensorflow
    backend

    allow_growth :: True of False

    fraction :: a float value (e.g. 0.5 means 4gb out of 8gb)

    '''

    from tensorflow.compat.v1 import GPUOptions, ConfigProto, Session
    from tensorflow.compat.v1 import keras as K

    gpu_options = GPUOptions(allow_growth=allow_growth,
                             per_process_gpu_memory_fraction=fraction)
    config = ConfigProto(gpu_options=gpu_options)
    session = Session(config=config)
    K.backend.set_session(session)
def deconv_volume(
    vol: np.ndarray,
    psf: np.ndarray,
    deconvolver: tfd_restoration.RichardsonLucyDeconvolver,
    n_iter: int,
    observer: Optional[Callable] = None,
) -> np.ndarray:
    """perform RL deconvolution on volume vol using deconvolver
    
    Parameters
    ----------
    vol : np.ndarray
        input volume
    psf : np.ndarray
        point spread function
    deconvolver : tfd_restoration.RichardsonLucyDeconvolver
        see init_rl_deconvolver
    n_iter : int
        number of RL iterations
    observer : Optional[Callable], optional
        NOT YET IMPLEMENTED
        observer callback so that progress updates for each iteration
        can be displayed. Also, add option to save intermediate results within
        a certain range of iterations.(the default is None)
    
    Returns
    -------
    np.ndarray
        deconvolved volume
    """
    # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.85)
    gpu_options = GPUOptions(allow_growth=True)
    config = ConfigProto(log_device_placement=False, gpu_options=gpu_options)
    aq = fd_data.Acquisition(data=vol, kernel=psf)
    if observer is not None:
        warnings.warn("Observer function for iteration not yet implemented.")
    result = deconvolver.run(aq, niter=n_iter, session_config=config)
    logger.debug(f"flowdec info: {result.info}")
    return result.data
    def detect_face(self, Img, image_size):
        minsize = 20
        threshold = [0.6, 0.7, 0.7]
        factor = 0.709
        margin = 44
        gpu_memory_fraction = 1.0

        print('Creating networks and loading parameters')
        with tf.Graph().as_default():
            gpu_options = GPUOptions(
                per_process_gpu_memory_fraction=gpu_memory_fraction)
            sess = Session(config=ConfigProto(gpu_options=gpu_options,
                                              log_device_placement=False))
            with sess.as_default():
                dir_model = "./align"
                pnet, rnet, onet = align.detect_face.create_mtcnn(
                    sess, dir_model)

                Img_size = np.asarray(Img.shape)[0:2]
                bounding_boxes, _ = align.detect_face.detect_face(
                    Img, minsize, pnet, rnet, onet, threshold, factor)
                faces = np.zeros(
                    (len(bounding_boxes), image_size, image_size, 3),
                    dtype="uint8")
                bb = np.zeros((len(bounding_boxes), 4), dtype=np.int32)
                for i in range(len(bounding_boxes)):
                    det = np.squeeze(bounding_boxes[i, 0:4])
                    bb[i, 0] = np.maximum(det[0] - margin / 2, 0)
                    bb[i, 1] = np.maximum(det[1] - margin / 2, 0)
                    bb[i, 2] = np.minimum(det[2] + margin / 2, Img_size[1])
                    bb[i, 3] = np.minimum(det[3] + margin / 2, Img_size[0])
                    cropped = Img[bb[i, 1]:bb[i, 3], bb[i, 0]:bb[i, 2], :]
                    img_cropped = Image.fromarray(cropped)
                    img_aligned = img_cropped.resize((image_size, image_size),
                                                     Image.BILINEAR)
                    aligned_arr = np.asarray(img_aligned)
                    faces[i, :, :, :] = cv2.cvtColor(aligned_arr,
                                                     cv2.COLOR_BGR2RGB)
        return faces, bb
Example #5
0
def test_dali_tf_op(pipe_type=CaffeReadPipeline, batch_size=16, iterations=32):
    test_batch = get_batch_dali(batch_size, pipe_type, tf.int32)
    try:
        from tensorflow.compat.v1 import GPUOptions
        from tensorflow.compat.v1 import ConfigProto
        from tensorflow.compat.v1 import Session
    except ImportError:
        # Older TF versions don't have compat.v1 layer
        from tensorflow import GPUOptions
        from tensorflow import ConfigProto
        from tensorflow import Session

    gpu_options = GPUOptions(per_process_gpu_memory_fraction=0.5)
    config = ConfigProto(gpu_options=gpu_options)
    with Session(config=config) as sess:
        for i in range(iterations):
            imgs, labels = sess.run(test_batch)
            # Testing correctness of labels
            for label in labels:
                # labels need to be integers
                assert np.equal(np.mod(label, 1), 0).all()
                assert (label >= 0).all()
                assert (label <= 999).all()
Example #6
0
    def __init__(self):
        '''
        dlib库对应的关键点模型
        '''
        # import pdb
        # pdb.set_trace()
        self.path = './face_models'
        # self.face_landmark_dlib = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
        # self.face_detector_dlib = dlib.get_frontal_face_detector()

        #set sess
        '''如果使用gpu,按需分配'''
        gpu_options = GPUOptions(allow_growth=True)
        session_config = ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False,
                                        gpu_options=gpu_options)
        '''
        初始化人脸特征模型, 人脸检测模型,人脸关键点模型
        '''

        self.face_feature_sess = Session(graph=tf.Graph(), config=session_config)
        self.face_detection_sess = Session(graph=tf.Graph(), config=session_config)
        self.face_landmark_sess = Session(graph=tf.Graph(), config=session_config)
        self.face_attribute_sess = Session(graph=tf.Graph(), config=session_config)

        self.ff_pb_path = self.path + "/face_recognition_model.pb"
        self.init_feature_face()

        self.detect_pb_path = self.path + "/face_detection_model.pb"
        self.init_detection_face_tf()

        self.landmark_pb_path = self.path + "/landmark.pb"
        self.init_face_landmark_tf()

        self.attribute_pb_path = self.path + "/face_attribute.pb"
        self.init_face_attribute()
Example #7
0
def get_tf_config(gpus=None, gpu_fraction=1, horovod=None,
                  allow_parallel_threads=True):
    intra_op_parallelism_threads = 2  # defult in tensorflow
    inter_op_parallelism_threads = 5  # defult in tensorflow
    if not allow_parallel_threads:
        # this is needed for reproducibility
        intra_op_parallelism_threads = 1
        inter_op_parallelism_threads = 1

    if gpus is not None:
        if gpu_fraction > 0 and gpu_fraction < 1:
            # this is the source of freezing in tensorflow 1.3.1
            gpu_options = GPUOptions(
                per_process_gpu_memory_fraction=gpu_fraction,
                allow_growth=True)
        else:
            gpu_options = GPUOptions(allow_growth=True)
            # allow_growth=True is needed for a weird behavior with CUDA 10
            # https://github.com/tensorflow/tensorflow/issues/24828
        if isinstance(gpus, int):
            gpus = [gpus]
        gpu_options.visible_device_list = ','.join(str(g) for g in gpus)
        tf_config = ConfigProto(
            allow_soft_placement=True,
            log_device_placement=False,
            intra_op_parallelism_threads=intra_op_parallelism_threads,
            inter_op_parallelism_threads=inter_op_parallelism_threads,
            gpu_options=gpu_options
        )
    else:
        tf_config = ConfigProto(
            allow_soft_placement=True,
            log_device_placement=False,
            intra_op_parallelism_threads=intra_op_parallelism_threads,
            inter_op_parallelism_threads=inter_op_parallelism_threads,
            gpu_options=GPUOptions(allow_growth=True)
        )

    if horovod is not None:
        tf_config.gpu_options.visible_device_list = str(horovod.local_rank())

    return tf_config
Example #8
0
import tensorflow as tf
import numpy as np
import cv2
from tensorflow.keras.callbacks import (ReduceLROnPlateau, EarlyStopping,
                                        ModelCheckpoint, TensorBoard)
from yolov3_tf2.models import (YoloV3, YoloV3Tiny, YoloLoss, yolo_anchors,
                               yolo_anchor_masks, yolo_tiny_anchors,
                               yolo_tiny_anchor_masks)
from yolov3_tf2.utils import freeze_all
import yolov3_tf2.dataset as dataset

# 慢慢使用GPU
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
from tensorflow.compat.v1 import GPUOptions
gpu_options = GPUOptions(per_process_gpu_memory_fraction=0.6)
config = ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)

flags.DEFINE_string('dataset', './data/voc2012_train.tfrecord',
                    'path to dataset')
flags.DEFINE_string('val_dataset', './data/voc2012_val.tfrecord',
                    'path to validation dataset')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_string('weights', './checkpoints/yolov3.tf',
                    'path to weights file')
flags.DEFINE_string('classes', './data/hats_voc2012.names',
                    'path to classes file')
flags.DEFINE_enum(
    'mode', 'fit', ['fit', 'eager_fit', 'eager_tf'], 'fit: model.fit, '
def test_fw_iter(IteratorClass, args):
    iterator_name = IteratorClass.__module__ + "." + IteratorClass.__name__
    print("Start testing {}".format(iterator_name))
    sess = None
    daliop = None
    dali_train_iter = None
    images = []
    labels = []

    pipes = [
        RN50Pipeline(batch_size=args.batch_size,
                     num_threads=args.workers,
                     device_id=n,
                     num_gpus=args.gpus,
                     data_paths=data_paths,
                     prefetch=PREFETCH,
                     fp16=args.fp16,
                     nhwc=args.nhwc) for n in range(args.gpus)
    ]
    [pipe.build() for pipe in pipes]
    iters = args.iters
    if args.iters < 0:
        iters = pipes[0].epoch_size("Reader")
        assert (all(pipe.epoch_size("Reader") == iters for pipe in pipes))
        iters_tmp = iters
        iters = iters // args.batch_size
        if iters_tmp != iters * args.batch_size:
            iters += 1
        iters_tmp = iters

        iters = iters // args.gpus
        if iters_tmp != iters * args.gpus:
            iters += 1

    if iterator_name == "nvidia.dali.plugin.tf.DALIIterator":
        daliop = IteratorClass()
        for dev in range(args.gpus):
            with tf.device('/gpu:%i' % dev):
                if args.fp16:
                    out_type = tf.float16
                else:
                    out_type = tf.float32
                image, label = daliop(pipeline=pipes[dev],
                                      shapes=[(args.batch_size, 3, 224, 224),
                                              ()],
                                      dtypes=[out_type, tf.int32])
                images.append(image)
                labels.append(label)
        gpu_options = GPUOptions(per_process_gpu_memory_fraction=0.8)
        config = ConfigProto(gpu_options=gpu_options)
        sess = Session(config=config)

    end = time.time()
    for i in range(args.epochs):
        if i == 0:
            print("Warm up")
        else:
            print("Test run " + str(i))
        data_time = AverageMeter()

        if iterator_name == "nvidia.dali.plugin.tf.DALIIterator":
            assert sess != None
            for j in range(iters):
                res = sess.run([images, labels])
                data_time.update(time.time() - end)
                if j % args.print_freq == 0:
                    print(
                        "{} {}/ {}, avg time: {} [s], worst time: {} [s], speed: {} [img/s]"
                        .format(iterator_name, j + 1, iters, data_time.avg,
                                data_time.max_val,
                                args.gpus * args.batch_size / data_time.avg))
                end = time.time()
        else:
            dali_train_iter = IteratorClass(pipes,
                                            pipes[0].epoch_size("Reader"))
            j = 0
            for it in iter(dali_train_iter):
                data_time.update(time.time() - end)
                if j % args.print_freq == 0:
                    print(
                        "{} {}/ {}, avg time: {} [s], worst time: {} [s], speed: {} [img/s]"
                        .format(iterator_name, j + 1, iters, data_time.avg,
                                data_time.max_val,
                                args.gpus * args.batch_size / data_time.avg))
                end = time.time()
                j = j + 1
                if j > iters:
                    break
Example #10
0
def train(infer_func, params):
    image_width = params['image_width']
    image_height = params['image_height']
    image_format = params['image_format']
    batch_size = params['batch_size']
    distort_color = params['distort_color']
    data_dir = params['data_dir']
    data_idx_dir = params['data_idx_dir']
    log_dir = params['log_dir']
    precision = params['precision']
    momentum = params['momentum']
    learning_rate_init = params['learning_rate_init']
    learning_rate_power = params['learning_rate_power']
    weight_decay = params['weight_decay']
    loss_scale = params['loss_scale']
    larc_eta = params['larc_eta']
    larc_mode = params['larc_mode']
    num_iter = params['num_iter']
    checkpoint_secs = params['checkpoint_secs']
    display_every = params['display_every']
    iter_unit = params['iter_unit']
    dali_cpu = params['dali_cpu']
    epoch_evaluation = params['epoch_evaluation']
    use_xla = params['use_xla']

    # Determinism is not fully supported by all TF ops.
    # Disabling until remaining wrinkles can be ironed out.
    deterministic = False
    if deterministic:
        tf.set_random_seed(2 * (1 + hvd.rank()))
        random.seed(3 * (1 + hvd.rank()))
        np.random.seed(2)

    log_dir = None if log_dir == "" else log_dir
    data_dir = None if data_dir == "" else data_dir
    data_idx_dir = None if data_idx_dir == "" else data_idx_dir

    global_batch_size = batch_size * hvd.size()
    if data_dir is not None:
        filename_pattern = os.path.join(data_dir, '%s-*')
        train_filenames = sorted(tf.gfile.Glob(filename_pattern % 'train'))
        num_training_samples = _get_num_records(train_filenames)
    else:
        num_training_samples = global_batch_size
    train_idx_filenames = None
    if data_idx_dir is not None:
        filename_pattern = os.path.join(data_idx_dir, '%s-*')
        train_idx_filenames = sorted(tf.gfile.Glob(filename_pattern % 'train'))

    if iter_unit.lower() == 'epoch':
        nstep = num_training_samples * num_iter // global_batch_size
        num_epochs = num_iter
        decay_steps = nstep
    else:
        nstep = num_iter
        num_epochs = max(nstep * global_batch_size // num_training_samples, 1)
        decay_steps = 90 * num_training_samples // global_batch_size

    nstep_per_epoch = num_training_samples // global_batch_size

    # Horovod: pin GPU to be used to process local rank (one GPU per process)
    gpu_options = GPUOptions(per_process_gpu_memory_fraction=0.7)
    config = ConfigProto(gpu_options=gpu_options)
    if use_xla:
        config.graph_options.optimizer_options.global_jit_level = (
            tf.OptimizerOptions.ON_1)
    #config.gpu_options.allow_growth = True
    config.gpu_options.visible_device_list = str(hvd.local_rank())
    config.gpu_options.force_gpu_compatible = True  # Force pinned memory
    config.intra_op_parallelism_threads = 1  # Avoid pool of Eigen threads
    config.inter_op_parallelism_threads = max(2, 40 // hvd.size() - 2)

    classifier = tf.estimator.Estimator(
        model_fn=_cnn_model_function,
        model_dir=log_dir,
        params={
            'model': infer_func,
            'format': image_format,
            'dtype': tf.float16 if precision == 'fp16' else tf.float32,
            'momentum': momentum,
            'learning_rate_init': learning_rate_init,
            'learning_rate_power': learning_rate_power,
            'decay_steps': decay_steps,
            'weight_decay': weight_decay,
            'loss_scale': loss_scale,
            'larc_eta': larc_eta,
            'larc_mode': larc_mode,
            'deterministic': deterministic,
            'n_classes': 1000,
            'dali_cpu': dali_cpu,
        },
        config=tf.estimator.RunConfig(
            tf_random_seed=2 * (1 + hvd.rank()) if deterministic else None,
            session_config=config,
            save_checkpoints_secs=checkpoint_secs if hvd.rank() == 0 else None,
            save_checkpoints_steps=nstep if hvd.rank() == 0 else None,
            keep_checkpoint_every_n_hours=3))

    print("Training")
    if not deterministic:
        num_preproc_threads = 4
    else:
        num_preproc_threads = 1

    training_hooks = [
        hvd.BroadcastGlobalVariablesHook(0),
        _PrefillStagingAreasHook()
    ]
    if hvd.rank() == 0:
        training_hooks.append(
            _LogSessionRunHook(global_batch_size, num_training_samples,
                               display_every))

    input_func = lambda: nvutils.image_set(train_filenames,
                                           batch_size,
                                           image_height,
                                           image_width,
                                           training=True,
                                           distort_color=distort_color,
                                           deterministic=deterministic,
                                           num_threads=num_preproc_threads,
                                           dali_cpu=dali_cpu,
                                           idx_filenames=train_idx_filenames)

    if epoch_evaluation:
        classifier_eval, eval_input_func, eval_steps = create_validation_estimator(
            infer_func, params)

    try:
        if epoch_evaluation:
            for i in range(num_epochs):
                classifier.train(input_fn=input_func,
                                 steps=nstep // num_epochs,
                                 hooks=training_hooks)
                if hvd.rank() == 0:
                    eval_result = classifier_eval.evaluate(
                        input_fn=eval_input_func, steps=eval_steps)
                    print('epoch {} top1: {}%'.format(
                        i, eval_result['top1_accuracy'] * 100))
                    print('epoch {} top5: {}%'.format(
                        i, eval_result['top5_accuracy'] * 100))
        else:
            classifier.train(input_fn=input_func,
                             max_steps=nstep,
                             hooks=training_hooks)

    except KeyboardInterrupt:
        print("Keyboard interrupt")
Example #11
0
File: main.py Project: nut41035/lab
def train_and_eval(DIR,
                   EPOCHS=20,
                   BS=16,
                   IMAGE_COUNT=139,
                   VALIDATION_COUNT=134,
                   learning_rate=0.05,
                   beta=0.5,
                   input_size=(64, 64, 32, 1)):
    # session setting
    """ os.environ['TF_CPP_MIN_LOG_LEVEL']
      0 = all messages are logged (default behavior)
      1 = INFO messages are not printed
      2 = INFO and WARNING messages are not printed
      3 = INFO, WARNING, and ERROR messages are not printed
    """
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    gpu_options = GPUOptions(per_process_gpu_memory_fraction=1.0)
    config = ConfigProto(gpu_options=gpu_options)
    config.gpu_options.allow_growth = True
    session = InteractiveSession(config=config)
    print("Number of GPUs Available: ",
          len(tf.config.experimental.list_physical_devices('GPU')))

    ## program parameter
    BASE_DIR = DIR
    TRAIN_DIR_PATH = BASE_DIR + 'train/'
    VALIDATION_DIR_PATH = BASE_DIR + 'validation/'
    seed = 1
    time_stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    # create logs
    log_dir = "logs/fit/" + time_stamp
    tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,
                                                          histogram_freq=0)
    file_writer = tf.summary.create_file_writer(log_dir)

    ## training parameter
    loss_func = tversky_loss(beta)
    steps_per_epoch = 70
    input_size = input_size

    ## construct training and validation set
    training_data = PPDataGenerator(TRAIN_DIR_PATH,
                                    batch_size=BS,
                                    image_size=64)
    validating_data = PPDataGenerator(VALIDATION_DIR_PATH,
                                      batch_size=BS,
                                      image_size=64)

    ## load model
    model = unet_norm(input_size=input_size,
                      loss_func=loss_func,
                      l_rate=learning_rate)
    print('#### Model loaded')

    ## training begin
    model.fit_generator(training_data,
                        steps_per_epoch=steps_per_epoch,
                        epochs=EPOCHS,
                        validation_data=validating_data,
                        callbacks=[tensorboard_callback])

    if not os.path.exists('./model/'):
        os.makedirs('./model/')
    model.save("model/UNet_%s.h5" % time_stamp)
    print("model saved at   model/UNet_%s.h5" % time_stamp)

    text = 'UNet_%s.h5\n\
            loss: weighted_dice  %s\n\
            learninf rate: %s\n\
            image size: %s\n'\
            %(time_stamp, beta,learning_rate,input_size)
    with open("./log.txt", "a") as myfile:
        myfile.write(text)

    ## prediction begin
    TP_sum, FP_sum, FN_sum, TP_P_sum, FP_P_sum, FN_P_sum = predict_folder(
        model,
        '%stest/' % BASE_DIR,
        save_mode=4,
        save_dir='./result/%s' % (time_stamp))
    eval_precision = divide(TP_sum, TP_sum + FP_sum)
    eval_recall = divide(TP_sum, TP_sum + FN_sum)
    eval_precision_P = divide(TP_P_sum, TP_P_sum + FP_P_sum)
    eval_recall_P = divide(TP_P_sum, TP_P_sum + FN_P_sum)
    text = 'Evaluation result:  %s\n\
            TP : %s\n\
            FP : %s\n\
            FN : %s\n\
            Recall by pixel: %s\n\
            Precision by pixel: %s\n\
            Recall by area: %s\n\
            Precision by area: %s\n\n\n'\
            %(time_stamp, TP_sum, FP_sum, FN_sum, eval_recall_P, eval_precision_P, eval_recall, eval_precision)
    with open("./log.txt", "a") as myfile:
        myfile.write(text)

    file_writer.close()
    InteractiveSession.close(session)
Example #12
0
def train_and_eval(params):
    # session setting
    """ os.environ['TF_CPP_MIN_LOG_LEVEL']
      0 = all messages are logged (default behavior)
      1 = INFO messages are not printed
      2 = INFO and WARNING messages are not printed
      3 = INFO, WARNING, and ERROR messages are not printed
    """
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    gpu_options = GPUOptions(per_process_gpu_memory_fraction=1.0)
    config = ConfigProto(gpu_options=gpu_options)
    config.gpu_options.allow_growth = True
    session = InteractiveSession(config=config)
    print("Number of GPUs Available: ",
          len(tf.config.experimental.list_physical_devices('GPU')))

    ## program parameter
    BASE_DIR = params[0]
    TRAIN_DIR_PATH = BASE_DIR + 'train/'
    VALIDATION_DIR_PATH = BASE_DIR + 'validation/'
    seed = params[1]
    time_stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    log_dir = params[2] + time_stamp
    tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,
                                                          histogram_freq=0)
    file_writer = tf.summary.create_file_writer(log_dir)

    ## training parameter
    loss_func = params[3]
    input_size = params[4]
    steps_per_epoch = params[5]
    EPOCHS = params[6]
    BS = params[7]
    IMAGE_COUNT = params[8]
    VALIDATION_COUNT = params[9]
    learning_rate = params[10]

    ## construct training and validation set
    training_data = DataGenerator(TRAIN_DIR_PATH,
                                  batch_size=BS,
                                  image_size=input_size[0])
    validating_data = DataGenerator(VALIDATION_DIR_PATH,
                                    batch_size=BS,
                                    image_size=input_size[0])

    ## load model
    model = unet(input_size=input_size,
                 loss_func=loss_func,
                 l_rate=learning_rate)
    model.summary()
    print('#### Model loaded')

    ## training begin
    model.fit_generator(training_data,
                        steps_per_epoch=steps_per_epoch,
                        epochs=EPOCHS,
                        validation_data=validating_data,
                        callbacks=[tensorboard_callback])

    if not os.path.exists('./model/'):
        os.makedirs('./model/')
    model.save("model/UNet_%s.h5" % time_stamp)
    print("model saved at   model/UNet_%s.h5" % time_stamp)

    text = 'UNet_%s.h5\n\
            Learning rate: %s\n\
            Image size: %s\n\
            Epoch: %s\n\
            Batch size: %s\n\
            Step per epoch: %s\n'\
            %(time_stamp, learning_rate, input_size, steps_per_epoch, BS, EPOCHS)
    with open("./log.txt", "a") as myfile:
        myfile.write(text)
    file_writer.close()
    InteractiveSession.close(session)

    ## prediction begin
    predict_folder(model,
                   '%stest/' % BASE_DIR,
                   save_dir='./result/%s' % (time_stamp))
    InteractiveSession.close(session)