Example #1
0
def _batch_dense_window(dataset):
  """Batches a window of dense tensors."""

  def key_fn(_):
    return np.int64(0)

  def shape_init_fn(_):
    return array_ops.shape(first_element)

  def shape_reduce_fn(state, value):
    check_ops.assert_equal(state, array_ops.shape(value))
    return state

  def finalize_fn(state):
    return state

  if dataset.output_shapes.is_fully_defined():
    shape = dataset.output_shapes
  else:
    first_element = get_single_element.get_single_element(dataset.take(1))
    shape_reducer = grouping.Reducer(shape_init_fn, shape_reduce_fn,
                                     finalize_fn)
    shape = get_single_element.get_single_element(
        dataset.apply(grouping.group_by_reducer(key_fn, shape_reducer)))

  def batch_init_fn(_):
    batch_shape = array_ops.concat([[0], shape], 0)
    return gen_array_ops.empty(batch_shape, dtype=dataset.output_types)

  def batch_reduce_fn(state, value):
    return array_ops.concat([state, [value]], 0)

  batch_reducer = grouping.Reducer(batch_init_fn, batch_reduce_fn, finalize_fn)
  return get_single_element.get_single_element(
      dataset.apply(grouping.group_by_reducer(key_fn, batch_reducer)))
Example #2
0
def _batch_dense_window(dataset):
    """Batches a window of dense tensors."""
    def key_fn(_):
        return np.int64(0)

    def shape_init_fn(_):
        return array_ops.shape(first_element)

    def shape_reduce_fn(state, value):
        check_ops.assert_equal(state, array_ops.shape(value))
        return state

    def finalize_fn(state):
        return state

    if dataset.output_shapes.is_fully_defined():
        shape = dataset.output_shapes
    else:
        first_element = get_single_element.get_single_element(dataset.take(1))
        shape_reducer = grouping.Reducer(shape_init_fn, shape_reduce_fn,
                                         finalize_fn)
        shape = get_single_element.get_single_element(
            dataset.apply(grouping.group_by_reducer(key_fn, shape_reducer)))

    def batch_init_fn(_):
        batch_shape = array_ops.concat([[0], shape], 0)
        return gen_array_ops.empty(batch_shape, dtype=dataset.output_types)

    def batch_reduce_fn(state, value):
        return array_ops.concat([state, [value]], 0)

    batch_reducer = grouping.Reducer(batch_init_fn, batch_reduce_fn,
                                     finalize_fn)
    return get_single_element.get_single_element(
        dataset.apply(grouping.group_by_reducer(key_fn, batch_reducer)))
Example #3
0
def _padded_batch_sparse_window(dataset, padded_shape):
    """Batches a window of sparse tensors with padding."""
    def key_fn(_):
        return np.int64(0)

    def max_init_fn(_):
        return convert.partial_shape_to_tensor(padded_shape)

    def max_reduce_fn(state, value):
        """Computes the maximum shape to pad to."""
        condition = math_ops.reduce_all(
            math_ops.logical_or(
                math_ops.less_equal(value.dense_shape, padded_shape),
                math_ops.equal(padded_shape, -1)))
        assert_op = control_flow_ops.Assert(condition, [
            "Actual shape greater than padded shape: ", value.dense_shape,
            padded_shape
        ])
        with ops.control_dependencies([assert_op]):
            return math_ops.maximum(state, value.dense_shape)

    def finalize_fn(state):
        return state

    # Compute the padded shape.
    max_reducer = grouping.Reducer(max_init_fn, max_reduce_fn, finalize_fn)
    padded_shape = get_single_element.get_single_element(
        dataset.apply(grouping.group_by_reducer(key_fn, max_reducer)))

    def batch_init_fn(_):
        indices_shape = array_ops.concat(
            [[0], [array_ops.size(padded_shape) + 1]], 0)
        return sparse_tensor.SparseTensor(
            indices=gen_array_ops.empty(indices_shape, dtype=dtypes.int64),
            values=constant_op.constant([],
                                        shape=[0],
                                        dtype=dataset.output_types),
            dense_shape=array_ops.concat(
                [np.array([0], dtype=np.int64), padded_shape], 0))

    def batch_reduce_fn(state, value):
        padded_value = sparse_tensor.SparseTensor(indices=value.indices,
                                                  values=value.values,
                                                  dense_shape=padded_shape)
        reshaped_value = sparse_ops.sparse_reshape(
            padded_value,
            array_ops.concat(
                [np.array([1], dtype=np.int64), padded_value.dense_shape], 0))
        return sparse_ops.sparse_concat(0, [state, reshaped_value])

    reducer = grouping.Reducer(batch_init_fn, batch_reduce_fn, finalize_fn)
    return get_single_element.get_single_element(
        dataset.apply(grouping.group_by_reducer(key_fn, reducer)))
Example #4
0
def _padded_batch_sparse_window(dataset, padded_shape):
  """Batches a window of sparse tensors with padding."""

  def key_fn(_):
    return np.int64(0)

  def max_init_fn(_):
    return convert.partial_shape_to_tensor(padded_shape)

  def max_reduce_fn(state, value):
    """Computes the maximum shape to pad to."""
    condition = math_ops.reduce_all(
        math_ops.logical_or(
            math_ops.less_equal(value.dense_shape, padded_shape),
            math_ops.equal(padded_shape, -1)))
    assert_op = control_flow_ops.Assert(condition, [
        "Actual shape greater than padded shape: ", value.dense_shape,
        padded_shape
    ])
    with ops.control_dependencies([assert_op]):
      return math_ops.maximum(state, value.dense_shape)

  def finalize_fn(state):
    return state

  # Compute the padded shape.
  max_reducer = grouping.Reducer(max_init_fn, max_reduce_fn, finalize_fn)
  padded_shape = get_single_element.get_single_element(
      dataset.apply(grouping.group_by_reducer(key_fn, max_reducer)))

  def batch_init_fn(_):
    indices_shape = array_ops.concat([[0], [array_ops.size(padded_shape) + 1]],
                                     0)
    return sparse_tensor.SparseTensor(
        indices=gen_array_ops.empty(indices_shape, dtype=dtypes.int64),
        values=constant_op.constant([], shape=[0], dtype=dataset.output_types),
        dense_shape=array_ops.concat(
            [np.array([0], dtype=np.int64), padded_shape], 0))

  def batch_reduce_fn(state, value):
    padded_value = sparse_tensor.SparseTensor(
        indices=value.indices, values=value.values, dense_shape=padded_shape)
    reshaped_value = sparse_ops.sparse_reshape(
        padded_value,
        array_ops.concat(
            [np.array([1], dtype=np.int64), padded_value.dense_shape], 0))
    return sparse_ops.sparse_concat(0, [state, reshaped_value])

  reducer = grouping.Reducer(batch_init_fn, batch_reduce_fn, finalize_fn)
  return get_single_element.get_single_element(
      dataset.apply(grouping.group_by_reducer(key_fn, reducer)))
Example #5
0
def _batch_sparse_window(dataset):
    """Batches a window of sparse tensors."""
    def key_fn(_):
        return np.int64(0)

    def shape_init_fn(_):
        return first_element.dense_shape

    def shape_reduce_fn(state, value):
        check_ops.assert_equal(state, value.dense_shape)
        return state

    def finalize_fn(state):
        return state

    if dataset.output_shapes.is_fully_defined():
        shape = dataset.output_shapes
    else:
        first_element = get_single_element.get_single_element(dataset.take(1))
        shape_reducer = grouping.Reducer(shape_init_fn, shape_reduce_fn,
                                         finalize_fn)
        shape = get_single_element.get_single_element(
            dataset.apply(grouping.group_by_reducer(key_fn, shape_reducer)))

    def batch_init_fn(_):
        indices_shape = array_ops.concat([[0], [array_ops.size(shape) + 1]], 0)
        return sparse_tensor.SparseTensor(
            indices=gen_array_ops.empty(indices_shape, dtype=dtypes.int64),
            values=constant_op.constant([],
                                        shape=[0],
                                        dtype=dataset.output_types),
            dense_shape=array_ops.concat([
                np.array([0], dtype=np.int64),
                math_ops.cast(shape, dtypes.int64)
            ], 0))

    def batch_reduce_fn(state, value):
        return sparse_ops.sparse_concat(0, [state, value])

    def reshape_fn(value):
        return sparse_ops.sparse_reshape(
            value,
            array_ops.concat(
                [np.array([1], dtype=np.int64), value.dense_shape], 0))

    batch_reducer = grouping.Reducer(batch_init_fn, batch_reduce_fn,
                                     finalize_fn)
    return get_single_element.get_single_element(
        dataset.map(reshape_fn).apply(
            grouping.group_by_reducer(key_fn, batch_reducer)))
Example #6
0
def reduce_dataset(dataset, reducer):
    """Returns the result of reducing the `dataset` using `reducer`.

  Args:
    dataset: A @{tf.data.Dataset} object.
    reducer: A @{tf.contrib.data.Reducer} object representing the reduce logic.

  Returns:
    A nested structure of @{tf.Tensor} objects, corresponding to the result
    of reducing `dataset` using `reducer`.

  Raises:
    TypeError: if `dataset` is not a `tf.data.Dataset` object.
  """
    if not isinstance(dataset, dataset_ops.Dataset):
        raise TypeError("`dataset` must be a `tf.data.Dataset` object.")

    # The sentinel dataset is used in case the reduced dataset is empty.
    sentinel_dataset = dataset_ops.Dataset.from_tensors(
        reducer.finalize_func(reducer.init_func(np.int64(0))))
    reduced_dataset = dataset.apply(
        grouping.group_by_reducer(lambda x: np.int64(0), reducer))

    return get_single_element(
        reduced_dataset.concatenate(sentinel_dataset).take(1))
Example #7
0
    def _build_dataset(self, components):
        reducer = grouping.Reducer(init_func=lambda _: np.int64(0),
                                   reduce_func=lambda x, y: x + y,
                                   finalize_func=lambda x: x)

        return dataset_ops.Dataset.from_tensor_slices(components).apply(
            grouping.group_by_reducer(lambda x: x % 5, reducer))
Example #8
0
    def testChangingStateShape(self):
        def reduce_fn(x, _):
            # Statically known rank, but dynamic length.
            larger_dim = array_ops.concat([x[0], x[0]], 0)
            # Statically unknown rank.
            larger_rank = array_ops.expand_dims(x[1], 0)
            return larger_dim, larger_rank

        reducer = grouping.Reducer(init_func=lambda x: ([0], 1),
                                   reduce_func=reduce_fn,
                                   finalize_func=lambda x, y: (x, y))

        for i in range(1, 11):
            dataset = dataset_ops.Dataset.from_tensors(
                np.int64(0)).repeat(i).apply(
                    grouping.group_by_reducer(lambda x: x, reducer))
            self.assertEqual([None], dataset.output_shapes[0].as_list())
            self.assertIs(None, dataset.output_shapes[1].ndims)
            iterator = dataset.make_one_shot_iterator()
            get_next = iterator.get_next()
            with self.test_session() as sess:
                x, y = sess.run(get_next)
                self.assertAllEqual([0] * (2**i), x)
                self.assertAllEqual(np.array(1, ndmin=i), y)
                with self.assertRaises(errors.OutOfRangeError):
                    sess.run(get_next)
Example #9
0
  def testChangingStateShape(self):

    def reduce_fn(x, _):
      # Statically known rank, but dynamic length.
      larger_dim = array_ops.concat([x[0], x[0]], 0)
      # Statically unknown rank.
      larger_rank = array_ops.expand_dims(x[1], 0)
      return larger_dim, larger_rank

    reducer = grouping.Reducer(
        init_func=lambda x: ([0], 1),
        reduce_func=reduce_fn,
        finalize_func=lambda x, y: (x, y))

    for i in range(1, 11):
      dataset = dataset_ops.Dataset.from_tensors(np.int64(0)).repeat(i).apply(
          grouping.group_by_reducer(lambda x: x, reducer))
      self.assertEqual([None], dataset.output_shapes[0].as_list())
      self.assertIs(None, dataset.output_shapes[1].ndims)
      iterator = dataset.make_one_shot_iterator()
      get_next = iterator.get_next()
      with self.cached_session() as sess:
        x, y = sess.run(get_next)
        self.assertAllEqual([0] * (2**i), x)
        self.assertAllEqual(np.array(1, ndmin=i), y)
        with self.assertRaises(errors.OutOfRangeError):
          sess.run(get_next)
def reduce_dataset(dataset, reducer):
  """Returns the result of reducing the `dataset` using `reducer`.

  Args:
    dataset: A @{tf.data.Dataset} object.
    reducer: A @{tf.contrib.data.Reducer} object representing the reduce logic.

  Returns:
    A nested structure of @{tf.Tensor} objects, corresponding to the result
    of reducing `dataset` using `reducer`.

  Raises:
    TypeError: if `dataset` is not a `tf.data.Dataset` object.
  """
  if not isinstance(dataset, dataset_ops.Dataset):
    raise TypeError("`dataset` must be a `tf.data.Dataset` object.")

  # The sentinel dataset is used in case the reduced dataset is empty.
  sentinel_dataset = dataset_ops.Dataset.from_tensors(
      reducer.finalize_func(reducer.init_func(np.int64(0))))
  reduced_dataset = dataset.apply(
      grouping.group_by_reducer(lambda x: np.int64(0), reducer))

  return get_single_element(
      reduced_dataset.concatenate(sentinel_dataset).take(1))
Example #11
0
def _batch_sparse_window(dataset):
  """Batches a window of sparse tensors."""

  def key_fn(_):
    return np.int64(0)

  def shape_init_fn(_):
    return first_element.dense_shape

  def shape_reduce_fn(state, value):
    check_ops.assert_equal(state, value.dense_shape)
    return state

  def finalize_fn(state):
    return state

  if dataset.output_shapes.is_fully_defined():
    shape = dataset.output_shapes
  else:
    first_element = get_single_element.get_single_element(dataset.take(1))
    shape_reducer = grouping.Reducer(shape_init_fn, shape_reduce_fn,
                                     finalize_fn)
    shape = get_single_element.get_single_element(
        dataset.apply(grouping.group_by_reducer(key_fn, shape_reducer)))

  def batch_init_fn(_):
    indices_shape = array_ops.concat([[0], [array_ops.size(shape) + 1]], 0)
    return sparse_tensor.SparseTensor(
        indices=gen_array_ops.empty(indices_shape, dtype=dtypes.int64),
        values=constant_op.constant([], shape=[0], dtype=dataset.output_types),
        dense_shape=array_ops.concat(
            [np.array([0], dtype=np.int64),
             math_ops.cast(shape, dtypes.int64)], 0))

  def batch_reduce_fn(state, value):
    return sparse_ops.sparse_concat(0, [state, value])

  def reshape_fn(value):
    return sparse_ops.sparse_reshape(
        value,
        array_ops.concat([np.array([1], dtype=np.int64), value.dense_shape], 0))

  batch_reducer = grouping.Reducer(batch_init_fn, batch_reduce_fn, finalize_fn)
  return get_single_element.get_single_element(
      dataset.map(reshape_fn).apply(
          grouping.group_by_reducer(key_fn, batch_reducer)))
Example #12
0
  def _build_dataset(self, components):
    reducer = grouping.Reducer(
        init_func=lambda _: np.int64(0),
        reduce_func=lambda x, y: x + y,
        finalize_func=lambda x: x)

    return dataset_ops.Dataset.from_tensor_slices(components).apply(
        grouping.group_by_reducer(lambda x: x % 5, reducer))
Example #13
0
 def testSum(self):
   reducer = grouping.Reducer(
       init_func=lambda _: np.int64(0),
       reduce_func=lambda x, y: x + y,
       finalize_func=lambda x: x)
   for i in range(1, 11):
     dataset = dataset_ops.Dataset.range(2 * i).apply(
         grouping.group_by_reducer(lambda x: x % 2, reducer))
     self.checkResults(
         dataset, shapes=tensor_shape.scalar(), values=[(i - 1) * i, i * i])
Example #14
0
 def testSum(self):
     reducer = grouping.Reducer(init_func=lambda _: np.int64(0),
                                reduce_func=lambda x, y: x + y,
                                finalize_func=lambda x: x)
     for i in range(1, 11):
         dataset = dataset_ops.Dataset.range(2 * i).apply(
             grouping.group_by_reducer(lambda x: x % 2, reducer))
         self.checkResults(dataset,
                           shapes=tensor_shape.scalar(),
                           values=[(i - 1) * i, i * i])
Example #15
0
    def testInvalidKeyType(self):
        reducer = grouping.Reducer(init_func=lambda x: np.int64(0),
                                   reduce_func=lambda x, y: x + y,
                                   finalize_func=lambda x: x)

        dataset = dataset_ops.Dataset.range(10)
        with self.assertRaisesRegexp(
                ValueError,
                "`key_func` must return a single tf.int64 tensor."):
            dataset.apply(grouping.group_by_reducer(lambda _: "wrong",
                                                    reducer))
Example #16
0
  def testInvalidKeyType(self):
    reducer = grouping.Reducer(
        init_func=lambda x: np.int64(0),
        reduce_func=lambda x, y: x + y,
        finalize_func=lambda x: x)

    dataset = dataset_ops.Dataset.range(10)
    with self.assertRaisesRegexp(
        ValueError, "`key_func` must return a single tf.int64 tensor."):
      dataset.apply(
          grouping.group_by_reducer(lambda _: "wrong", reducer))
Example #17
0
  def testTypeMismatch(self):
    reducer = grouping.Reducer(
        init_func=lambda x: constant_op.constant(1, dtype=dtypes.int32),
        reduce_func=lambda x, y: constant_op.constant(1, dtype=dtypes.int64),
        finalize_func=lambda x: x)

    dataset = dataset_ops.Dataset.range(10)
    with self.assertRaisesRegexp(
        TypeError,
        "The element types for the new state must match the initial state."):
      dataset.apply(
          grouping.group_by_reducer(lambda _: np.int64(0), reducer))
Example #18
0
  def testTypeMismatch(self):
    reducer = grouping.Reducer(
        init_func=lambda x: constant_op.constant(1, dtype=dtypes.int32),
        reduce_func=lambda x, y: constant_op.constant(1, dtype=dtypes.int64),
        finalize_func=lambda x: x)

    dataset = dataset_ops.Dataset.range(10)
    with self.assertRaisesRegexp(
        TypeError,
        "The element types for the new state must match the initial state."):
      dataset.apply(
          grouping.group_by_reducer(lambda _: np.int64(0), reducer))
Example #19
0
 def testConcat(self):
     components = np.array(list("abcdefghijklmnopqrst")).view(np.chararray)
     reducer = grouping.Reducer(init_func=lambda x: "",
                                reduce_func=lambda x, y: x + y[0],
                                finalize_func=lambda x: x)
     for i in range(1, 11):
         dataset = dataset_ops.Dataset.zip(
             (dataset_ops.Dataset.from_tensor_slices(components),
              dataset_ops.Dataset.range(2 * i))).apply(
                  grouping.group_by_reducer(lambda x, y: y % 2, reducer))
         self.checkResults(dataset,
                           shapes=tensor_shape.scalar(),
                           values=[b"acegikmoqs"[:i], b"bdfhjlnprt"[:i]])
Example #20
0
 def testConcat(self):
   components = np.array(list("abcdefghijklmnopqrst")).view(np.chararray)
   reducer = grouping.Reducer(
       init_func=lambda x: "",
       reduce_func=lambda x, y: x + y[0],
       finalize_func=lambda x: x)
   for i in range(1, 11):
     dataset = dataset_ops.Dataset.zip(
         (dataset_ops.Dataset.from_tensor_slices(components),
          dataset_ops.Dataset.range(2 * i))).apply(
              grouping.group_by_reducer(lambda x, y: y % 2, reducer))
     self.checkResults(
         dataset,
         shapes=tensor_shape.scalar(),
         values=[b"acegikmoqs" [:i], b"bdfhjlnprt" [:i]])
Example #21
0
    def testAverage(self):
        def reduce_fn(x, y):
            return (x[0] * x[1] +
                    math_ops.cast(y, dtypes.float32)) / (x[1] + 1), x[1] + 1

        reducer = grouping.Reducer(init_func=lambda _: (0.0, 0.0),
                                   reduce_func=reduce_fn,
                                   finalize_func=lambda x, _: x)
        for i in range(1, 11):
            dataset = dataset_ops.Dataset.range(2 * i).apply(
                grouping.group_by_reducer(
                    lambda x: math_ops.cast(x, dtypes.int64) % 2, reducer))
            self.checkResults(dataset,
                              shapes=tensor_shape.scalar(),
                              values=[i - 1, i])
Example #22
0
  def testSparseSum(self):
    def _sparse(i):
      return sparse_tensor.SparseTensorValue(
          indices=np.array([[0, 0]]),
          values=(i * np.array([1], dtype=np.int64)),
          dense_shape=np.array([1, 1]))

    reducer = grouping.Reducer(
        init_func=lambda _: _sparse(np.int64(0)),
        reduce_func=lambda x, y: _sparse(x.values[0] + y.values[0]),
        finalize_func=lambda x: x.values[0])
    for i in range(1, 11):
      dataset = dataset_ops.Dataset.range(2 * i).map(_sparse).apply(
          grouping.group_by_reducer(lambda x: x.values[0] % 2, reducer))
      self.checkResults(
          dataset, shapes=tensor_shape.scalar(), values=[(i - 1) * i, i * i])
Example #23
0
  def testAverage(self):

    def reduce_fn(x, y):
      return (x[0] * x[1] + math_ops.cast(y, dtypes.float32)) / (
          x[1] + 1), x[1] + 1

    reducer = grouping.Reducer(
        init_func=lambda _: (0.0, 0.0),
        reduce_func=reduce_fn,
        finalize_func=lambda x, _: x)
    for i in range(1, 11):
      dataset = dataset_ops.Dataset.range(2 * i).apply(
          grouping.group_by_reducer(
              lambda x: math_ops.cast(x, dtypes.int64) % 2, reducer))
      self.checkResults(
          dataset, shapes=tensor_shape.scalar(), values=[i - 1, i])
Example #24
0
  def testSparseSum(self):
    def _sparse(i):
      return sparse_tensor.SparseTensorValue(
          indices=np.array([[0, 0]]),
          values=(i * np.array([1], dtype=np.int64)),
          dense_shape=np.array([1, 1]))

    reducer = grouping.Reducer(
        init_func=lambda _: _sparse(np.int64(0)),
        reduce_func=lambda x, y: _sparse(x.values[0] + y.values[0]),
        finalize_func=lambda x: x.values[0])
    for i in range(1, 11):
      dataset = dataset_ops.Dataset.range(2 * i).map(_sparse).apply(
          grouping.group_by_reducer(lambda x: x.values[0] % 2, reducer))
      self.checkResults(
          dataset, shapes=tensor_shape.scalar(), values=[(i - 1) * i, i * i])
Example #25
0
  def testTuple(self):
    def init_fn(_):
      return np.array([], dtype=np.int64), np.int64(0)

    def reduce_fn(state, value):
      s1, s2 = state
      v1, v2 = value
      return array_ops.concat([s1, [v1]], 0), s2 + v2

    def finalize_fn(s1, s2):
      return s1, s2

    reducer = grouping.Reducer(init_fn, reduce_fn, finalize_fn)
    dataset = dataset_ops.Dataset.zip(
        (dataset_ops.Dataset.range(10), dataset_ops.Dataset.range(10))).apply(
            grouping.group_by_reducer(lambda x, y: np.int64(0), reducer))
    get_next = dataset.make_one_shot_iterator().get_next()
    with self.cached_session() as sess:
      x, y = sess.run(get_next)
      self.assertAllEqual(x, np.asarray([x for x in range(10)]))
      self.assertEqual(y, 45)
Example #26
0
  def testTuple(self):
    def init_fn(_):
      return np.array([], dtype=np.int64), np.int64(0)

    def reduce_fn(state, value):
      s1, s2 = state
      v1, v2 = value
      return array_ops.concat([s1, [v1]], 0), s2 + v2

    def finalize_fn(s1, s2):
      return s1, s2

    reducer = grouping.Reducer(init_fn, reduce_fn, finalize_fn)
    dataset = dataset_ops.Dataset.zip(
        (dataset_ops.Dataset.range(10), dataset_ops.Dataset.range(10))).apply(
            grouping.group_by_reducer(lambda x, y: np.int64(0), reducer))
    get_next = dataset.make_one_shot_iterator().get_next()
    with self.cached_session() as sess:
      x, y = sess.run(get_next)
      self.assertAllEqual(x, np.asarray([x for x in range(10)]))
      self.assertEqual(y, 45)
Example #27
0
def _padded_batch_dense_window(dataset, padded_shape, padding_value=None):
    """Batches a window of dense tensors with padding."""

    padded_shape = math_ops.cast(convert.partial_shape_to_tensor(padded_shape),
                                 dtypes.int32)

    def key_fn(_):
        return np.int64(0)

    def max_init_fn(_):
        return padded_shape

    def max_reduce_fn(state, value):
        """Computes the maximum shape to pad to."""
        condition = math_ops.reduce_all(
            math_ops.logical_or(
                math_ops.less_equal(array_ops.shape(value), padded_shape),
                math_ops.equal(padded_shape, -1)))
        assert_op = control_flow_ops.Assert(condition, [
            "Actual shape greater than padded shape: ",
            array_ops.shape(value), padded_shape
        ])
        with ops.control_dependencies([assert_op]):
            return math_ops.maximum(state, array_ops.shape(value))

    def finalize_fn(state):
        return state

    # Compute the padded shape.
    max_reducer = grouping.Reducer(max_init_fn, max_reduce_fn, finalize_fn)
    padded_shape = get_single_element.get_single_element(
        dataset.apply(grouping.group_by_reducer(key_fn, max_reducer)))

    if padding_value is None:
        if dataset.output_types == dtypes.string:
            padding_value = ""
        elif dataset.output_types == dtypes.bool:
            padding_value = False
        elif dataset.output_types == dtypes.variant:
            raise TypeError(
                "Unable to create padding for field of type 'variant'")
        else:
            padding_value = 0

    def batch_init_fn(_):
        return array_ops.fill(
            array_ops.concat([np.array([0], dtype=np.int32), padded_shape], 0),
            constant_op.constant(padding_value, dtype=dataset.output_types))

    def batch_reduce_fn(state, value):
        return array_ops.concat([state, [value]], 0)

    def pad_fn(value):
        shape = array_ops.shape(value)
        left = array_ops.zeros_like(shape)
        right = padded_shape - shape
        return array_ops.pad(value,
                             array_ops.stack([left, right], 1),
                             constant_values=padding_value)

    batch_reducer = grouping.Reducer(batch_init_fn, batch_reduce_fn,
                                     finalize_fn)
    return get_single_element.get_single_element(
        dataset.map(pad_fn).apply(
            grouping.group_by_reducer(key_fn, batch_reducer)))
Example #28
0
def _padded_batch_dense_window(dataset, padded_shape, padding_value=None):
  """Batches a window of dense tensors with padding."""

  padded_shape = math_ops.cast(
      convert.partial_shape_to_tensor(padded_shape), dtypes.int32)

  def key_fn(_):
    return np.int64(0)

  def max_init_fn(_):
    return padded_shape

  def max_reduce_fn(state, value):
    """Computes the maximum shape to pad to."""
    condition = math_ops.reduce_all(
        math_ops.logical_or(
            math_ops.less_equal(array_ops.shape(value), padded_shape),
            math_ops.equal(padded_shape, -1)))
    assert_op = control_flow_ops.Assert(condition, [
        "Actual shape greater than padded shape: ",
        array_ops.shape(value), padded_shape
    ])
    with ops.control_dependencies([assert_op]):
      return math_ops.maximum(state, array_ops.shape(value))

  def finalize_fn(state):
    return state

  # Compute the padded shape.
  max_reducer = grouping.Reducer(max_init_fn, max_reduce_fn, finalize_fn)
  padded_shape = get_single_element.get_single_element(
      dataset.apply(grouping.group_by_reducer(key_fn, max_reducer)))

  if padding_value is None:
    if dataset.output_types == dtypes.string:
      padding_value = ""
    elif dataset.output_types == dtypes.bool:
      padding_value = False
    elif dataset.output_types == dtypes.variant:
      raise TypeError("Unable to create padding for field of type 'variant'")
    else:
      padding_value = 0

  def batch_init_fn(_):
    return array_ops.fill(
        array_ops.concat([np.array([0], dtype=np.int32), padded_shape], 0),
        constant_op.constant(padding_value, dtype=dataset.output_types))

  def batch_reduce_fn(state, value):
    return array_ops.concat([state, [value]], 0)

  def pad_fn(value):
    shape = array_ops.shape(value)
    left = array_ops.zeros_like(shape)
    right = padded_shape - shape
    return array_ops.pad(
        value, array_ops.stack([left, right], 1), constant_values=padding_value)

  batch_reducer = grouping.Reducer(batch_init_fn, batch_reduce_fn, finalize_fn)
  return get_single_element.get_single_element(
      dataset.map(pad_fn).apply(
          grouping.group_by_reducer(key_fn, batch_reducer)))