def testBetaBetaKL(self): with self.test_session() as sess: for shape in [(10, ), (4, 5)]: a1 = 6.0 * np.random.random(size=shape) + 1e-4 b1 = 6.0 * np.random.random(size=shape) + 1e-4 a2 = 6.0 * np.random.random(size=shape) + 1e-4 b2 = 6.0 * np.random.random(size=shape) + 1e-4 # Take inverse softplus of values to test BetaWithSoftplusAB a1_sp = np.log(np.exp(a1) - 1.0) b1_sp = np.log(np.exp(b1) - 1.0) a2_sp = np.log(np.exp(a2) - 1.0) b2_sp = np.log(np.exp(b2) - 1.0) d1 = beta_lib.Beta(a=a1, b=b1) d2 = beta_lib.Beta(a=a2, b=b2) d1_sp = beta_lib.BetaWithSoftplusAB(a=a1_sp, b=b1_sp) d2_sp = beta_lib.BetaWithSoftplusAB(a=a2_sp, b=b2_sp) kl_expected = (special.betaln(a2, b2) - special.betaln(a1, b1) + (a1 - a2) * special.digamma(a1) + (b1 - b2) * special.digamma(b1) + (a2 - a1 + b2 - b1) * special.digamma(a1 + b1)) for dist1 in [d1, d1_sp]: for dist2 in [d2, d2_sp]: kl = kullback_leibler.kl(dist1, dist2) kl_val = sess.run(kl) self.assertEqual(kl.get_shape(), shape) self.assertAllClose(kl_val, kl_expected) # Make sure KL(d1||d1) is 0 kl_same = sess.run(kullback_leibler.kl(d1, d1)) self.assertAllClose(kl_same, np.zeros_like(kl_expected))
def testBetaModeInvalid(self): with session.Session(): a = np.array([1., 2, 3]) b = np.array([2., 4, 1.2]) dist = beta_lib.Beta(a, b, allow_nan_stats=False) with self.assertRaisesOpError("Condition x < y.*"): dist.mode().eval() a = np.array([2., 2, 3]) b = np.array([1., 4, 1.2]) dist = beta_lib.Beta(a, b, allow_nan_stats=False) with self.assertRaisesOpError("Condition x < y.*"): dist.mode().eval()
def testBetaSampleMultipleTimes(self): with self.test_session(): a_val = 1. b_val = 2. n_val = 100 random_seed.set_random_seed(654321) beta1 = beta_lib.Beta(a=a_val, b=b_val, name="beta1") samples1 = beta1.sample(n_val, seed=123456).eval() random_seed.set_random_seed(654321) beta2 = beta_lib.Beta(a=a_val, b=b_val, name="beta2") samples2 = beta2.sample(n_val, seed=123456).eval() self.assertAllClose(samples1, samples2)
def testBetaProperty(self): a = [[1., 2, 3]] b = [[2., 4, 3]] with self.test_session(): dist = beta_lib.Beta(a, b) self.assertEqual([1, 3], dist.concentration0.get_shape()) self.assertAllClose(b, dist.concentration0.eval())
def testAlphaProperty(self): a = [[1., 2, 3]] b = [[2., 4, 3]] with self.test_session(): dist = beta_lib.Beta(a, b) self.assertEqual([1, 3], dist.a.get_shape()) self.assertAllClose(a, dist.a.eval())
def testBetaVariance(self): with session.Session(): a = [1., 2, 3] b = [2., 4, 1.2] expected_variance = stats.beta.var(a, b) dist = beta_lib.Beta(a, b) self.assertEqual(dist.variance().get_shape(), (3, )) self.assertAllClose(expected_variance, dist.variance().eval())
def testPdfXStretchedInBroadcastWhenLowerRank(self): with self.test_session(): a = [[1., 2], [2., 3]] b = [[1., 2], [2., 3]] x = [.5, .5] pdf = beta_lib.Beta(a, b).prob(x) self.assertAllClose([[1., 3. / 2], [3. / 2, 15. / 8]], pdf.eval()) self.assertEqual((2, 2), pdf.get_shape())
def testPdfAlphaStretchedInBroadcastWhenLowerRank(self): with self.test_session(): a = [1., 2] b = [1., 2] x = [[.5, .5], [.2, .8]] pdf = beta_lib.Beta(a, b).prob(x) self.assertAllClose([[1., 3. / 2], [1., 24. / 25]], pdf.eval()) self.assertEqual((2, 2), pdf.get_shape())
def testBetaEntropy(self): with session.Session(): a = [1., 2, 3] b = [2., 4, 1.2] expected_entropy = stats.beta.entropy(a, b) dist = beta_lib.Beta(a, b) self.assertEqual(dist.entropy().get_shape(), (3, )) self.assertAllClose(expected_entropy, dist.entropy().eval())
def testBetaMode(self): with session.Session(): a = np.array([1.1, 2, 3]) b = np.array([2., 4, 1.2]) expected_mode = (a - 1) / (a + b - 2) dist = beta_lib.Beta(a, b) self.assertEqual(dist.mode().get_shape(), (3, )) self.assertAllClose(expected_mode, dist.mode().eval())
def testBetaMean(self): with session.Session(): a = [1., 2, 3] b = [2., 4, 1.2] expected_mean = stats.beta.mean(a, b) dist = beta_lib.Beta(a, b) self.assertEqual(dist.mean().get_shape(), (3, )) self.assertAllClose(expected_mean, dist.mean().eval())
def testPdfAlphaStretchedInBroadcastWhenSameRank(self): with self.test_session(): a = [[1., 2]] b = [[1., 2]] x = [[.5, .5], [.3, .7]] dist = beta_lib.Beta(a, b) pdf = dist.prob(x) self.assertAllClose([[1., 3. / 2], [1., 63. / 50]], pdf.eval()) self.assertEqual((2, 2), pdf.get_shape())
def testPdfTwoBatchesNontrivialX(self): with self.test_session(): a = [1., 2] b = [1., 2] x = [.3, .7] dist = beta_lib.Beta(a, b) pdf = dist.prob(x) self.assertAllClose([1, 63. / 50], pdf.eval()) self.assertEqual((2, ), pdf.get_shape())
def testPdfTwoBatches(self): with self.test_session(): a = [1., 2] b = [1., 2] x = [.5, .5] dist = beta_lib.Beta(a, b) pdf = dist.prob(x) self.assertAllClose([1., 3. / 2], pdf.eval()) self.assertEqual((2, ), pdf.get_shape())
def testSimpleShapes(self): with self.test_session(): a = np.random.rand(3) b = np.random.rand(3) dist = beta_lib.Beta(a, b) self.assertAllEqual([], dist.event_shape_tensor().eval()) self.assertAllEqual([3], dist.batch_shape_tensor().eval()) self.assertEqual(tensor_shape.TensorShape([]), dist.event_shape) self.assertEqual(tensor_shape.TensorShape([3]), dist.batch_shape)
def testComplexShapesBroadcast(self): with self.test_session(): a = np.random.rand(3, 2, 2) b = np.random.rand(2, 2) dist = beta_lib.Beta(a, b) self.assertAllEqual([], dist.event_shape_tensor().eval()) self.assertAllEqual([3, 2, 2], dist.batch_shape_tensor().eval()) self.assertEqual(tensor_shape.TensorShape([]), dist.event_shape) self.assertEqual(tensor_shape.TensorShape([3, 2, 2]), dist.batch_shape)
def testPdfUniformZeroBatch(self): with self.test_session(): # This is equivalent to a uniform distribution a = 1. b = 1. x = np.array([.1, .2, .3, .5, .8], dtype=np.float32) dist = beta_lib.Beta(a, b) pdf = dist.prob(x) self.assertAllClose([1.] * 5, pdf.eval()) self.assertEqual((5, ), pdf.get_shape())
def testBetaModeEnableAllowNanStats(self): with session.Session(): a = np.array([1., 2, 3]) b = np.array([2., 4, 1.2]) dist = beta_lib.Beta(a, b, allow_nan_stats=True) expected_mode = (a - 1) / (a + b - 2) expected_mode[0] = np.nan self.assertEqual((3, ), dist.mode().get_shape()) self.assertAllClose(expected_mode, dist.mode().eval()) a = np.array([2., 2, 3]) b = np.array([1., 4, 1.2]) dist = beta_lib.Beta(a, b, allow_nan_stats=True) expected_mode = (a - 1) / (a + b - 2) expected_mode[0] = np.nan self.assertEqual((3, ), dist.mode().get_shape()) self.assertAllClose(expected_mode, dist.mode().eval())
def testBetaLogCdf(self): with self.test_session(): shape = (30, 40, 50) for dt in (np.float32, np.float64): a = 10. * np.random.random(shape).astype(dt) b = 10. * np.random.random(shape).astype(dt) x = np.random.random(shape).astype(dt) actual = math_ops.exp(beta_lib.Beta(a, b).log_cdf(x)).eval() self.assertAllEqual(np.ones(shape, dtype=np.bool), 0. <= x) self.assertAllEqual(np.ones(shape, dtype=np.bool), 1. >= x) self.assertAllClose(stats.beta.cdf(x, a, b), actual, rtol=1e-4, atol=0)
def testBetaSampleMultidimensional(self): with self.test_session(): a = np.random.rand(3, 2, 2).astype(np.float32) b = np.random.rand(3, 2, 2).astype(np.float32) beta = beta_lib.Beta(a, b) n = constant_op.constant(100000) samples = beta.sample(n) sample_values = samples.eval() self.assertEqual(sample_values.shape, (100000, 3, 2, 2)) self.assertFalse(np.any(sample_values < 0.0)) self.assertAllClose(sample_values[:, 1, :].mean(axis=0), stats.beta.mean(a, b)[1, :], atol=1e-1)
def testPdfXProper(self): a = [[1., 2, 3]] b = [[2., 4, 3]] with self.test_session(): dist = beta_lib.Beta(a, b, validate_args=True) dist.prob([.1, .3, .6]).eval() dist.prob([.2, .3, .5]).eval() # Either condition can trigger. with self.assertRaisesOpError("sample must be positive"): dist.prob([-1., 0.1, 0.5]).eval() with self.assertRaisesOpError("sample must be positive"): dist.prob([0., 0.1, 0.5]).eval() with self.assertRaisesOpError("sample must be no larger than `1`"): dist.prob([.1, .2, 1.2]).eval()
def testPdfXProper(self): a = [[1., 2, 3]] b = [[2., 4, 3]] with self.test_session(): dist = beta_lib.Beta(a, b, validate_args=True) dist.pdf([.1, .3, .6]).eval() dist.pdf([.2, .3, .5]).eval() # Either condition can trigger. with self.assertRaisesOpError( "(Condition x > 0.*|Condition x < y.*)"): dist.pdf([-1., 1, 1]).eval() with self.assertRaisesOpError("Condition x.*"): dist.pdf([0., 1, 1]).eval() with self.assertRaisesOpError("Condition x < y.*"): dist.pdf([.1, .2, 1.2]).eval()
def testBetaSample(self): with self.test_session(): a = 1. b = 2. beta = beta_lib.Beta(a, b) n = constant_op.constant(100000) samples = beta.sample(n) sample_values = samples.eval() self.assertEqual(sample_values.shape, (100000,)) self.assertFalse(np.any(sample_values < 0.0)) self.assertLess( stats.kstest( # Beta is a univariate distribution. sample_values, stats.beta(a=1., b=2.).cdf)[0], 0.01) # The standard error of the sample mean is 1 / (sqrt(18 * n)) self.assertAllClose( sample_values.mean(axis=0), stats.beta.mean(a, b), atol=1e-2) self.assertAllClose( np.cov(sample_values, rowvar=0), stats.beta.var(a, b), atol=1e-1)