Example #1
0
    def set_graph(self, embedding_matrix):
        with self.graph.as_default():
            # tf Graph input
            tf.set_random_seed(1)

            self.x = tf.placeholder(tf.int32, shape=(self.cfg.bsize, self.cfg.max_seq_len), name="x")
            self.y = tf.placeholder(tf.float32, shape=(self.cfg.bsize,6), name="y")
            self.em = tf.placeholder(tf.float32, shape=(embedding_matrix.shape[0], embedding_matrix.shape[1]), name="em")
            self.keep_prob = tf.placeholder(dtype=tf.float32, name="keep_prob")


            self.output = model_baseline(self.em,self.x,self.keep_prob) #self.cfg.bsize


            with tf.variable_scope('logits'):
                self.logits = self.output

            with tf.variable_scope('loss'):
                self.loss = binary_crossentropy(self.y,self.logits)
                self.cost = tf.losses.log_loss(predictions=self.logits, labels=self.y)
                (_, self.auc_update_op) = tf.metrics.auc(predictions=self.logits,labels=self.y,curve='ROC')
            self.global_step = tf.Variable(0, trainable=False)
            self.learning_rate = tf.train.exponential_decay(self.cfg.lr, self.global_step,self.cfg.decay_steps, self.cfg.decay, staircase=True)

            with tf.variable_scope('optim'):
                self.optimizer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate).minimize(self.loss,global_step=self.global_step)

            with tf.variable_scope('saver'):
                self.saver = tf.train.Saver(max_to_keep=self.cfg.max_models_to_keep)
X_valid = X[:split_at]
Y_valid = Y[:split_at]
X_train = X[split_at:]
Y_train = Y[split_at:]

graph = tf.Graph()

with graph.as_default():

    with tf.variable_scope('Input'):
        x = tf.placeholder(dtype=tf.int32,shape=(None,maxlen))
        y = tf.placeholder(dtype=tf.float32,shape=(None,6))

        logits =

        loss = binary_crossentropy(y, logits)
        cost = tf.losses.log_loss(labels=y, predictions=logits)
        optimizer = tf.train.RMSPropOptimizer(learning_rate=0.01).minimize(loss)
        (_, auc_update_op) = tf.contrib.metrics.streaming_auc(
            predictions=logits,
            labels=y,
            curve='ROC')


train_iters = len(X_train) - 2*bsize
valid_iters = len(X_valid) - 2*bsize

with tf.Session(graph=graph) as sess:
    init = tf.global_variables_initializer()
    sess.run(init)
    for epoch in range(EPOCHS):