Example #1
0
    def add_eval_step(self, result_tensor, ground_truth_tensor):
        with tf.name_scope('correlations'):
            with tf.name_scope('Yaw_correlation'):
                yaw_correlation, yaw_update_op = streaming_pearson_correlation(
                    predictions=result_tensor[0],
                    labels=ground_truth_tensor[0])
                tf.summary.scalar('Yaw_correlation', yaw_update_op)

            with tf.name_scope('Roll_correlation'):
                roll_correlation, roll_update_op = streaming_pearson_correlation(
                    predictions=result_tensor[1],
                    labels=ground_truth_tensor[1])
                tf.summary.scalar('Roll_correlation', roll_update_op)

            with tf.name_scope('Pitch_correlation'):
                pitch_correlation, pitch_update_op = streaming_pearson_correlation(
                    predictions=result_tensor[2],
                    labels=ground_truth_tensor[2])
                tf.summary.scalar('Pitch_correlation', pitch_update_op)

            final_correlations = [
                yaw_correlation, roll_correlation, pitch_correlation
            ]
            streaming_correlations = [
                yaw_update_op, roll_update_op, pitch_update_op
            ]

        return streaming_correlations, final_correlations
Example #2
0
                def metric_fn(per_example_loss, label_ids, logits,
                              is_real_example):
                    """Compute Pearson correlations for STS-B."""
                    # Display labels and predictions
                    concat1 = contrib_metrics.streaming_concat(logits)
                    concat2 = contrib_metrics.streaming_concat(label_ids)

                    # Compute Pearson correlation
                    pearson = contrib_metrics.streaming_pearson_correlation(
                        logits, label_ids, weights=is_real_example)

                    # Compute MSE
                    # mse = tf.metrics.mean(per_example_loss)
                    mse = tf.metrics.mean_squared_error(
                        label_ids, logits, weights=is_real_example)

                    loss = tf.metrics.mean(values=per_example_loss,
                                           weights=is_real_example)

                    return {
                        "pred": concat1,
                        "label_ids": concat2,
                        "pearson": pearson,
                        "MSE": mse,
                        "eval_loss": loss,
                    }
    def _define_metrics(self):
        mse = tf.reduce_mean(tf.square(self.prediction - self.label), name='mse')
        mae = tf.reduce_mean(tf.abs(self.prediction - self.label), name='mae')
        pcc = streaming_pearson_correlation(self.prediction, self.label, name='pcc')

        self.metrics['mse'] = mse
        self.metrics['mae'] = mae
        self.metrics['pcc'] = pcc
def rnn_framework(features, labels, mode):
    #输入层
    input_layer = tf.reshape(features, [-1, 256, 128])
    #LSTM神经元
    lstm_cell = rnn.BasicLSTMCell(50)
    #RNN
    _, Rnn = dynamic_rnn(lstm_cell, input_layer, dtype=tf.float64)

    logits = tf.layers.dense(inputs=Rnn.h, units=8)
    #生成预测(字典,分别为单值预测和概率预测)
    predictions = {
        'classes': tf.argmax(input=logits, axis=1),
        'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
    }
    #预测功能:当mode处于预测模式时,返回字典predictions作为对样本的分类预测结果
    if mode == tensorflow_estimator.estimator.ModeKeys.PREDICT:
        return tensorflow_estimator.estimator.EstimatorSpec(
            mode=mode, predictions=predictions)
    #损失计算(mode处于训练模式),使用交叉熵作为损失指标
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
    #配置训练操作
    if mode == tensorflow_estimator.estimator.ModeKeys.TRAIN:
        optimizer = tf.train.AdagradOptimizer(learning_rate=0.001)
        op = optimizer.minimize(loss=loss,
                                global_step=tf.train.get_global_step())
        return tensorflow_estimator.estimator.EstimatorSpec(mode=mode,
                                                            loss=loss,
                                                            train_op=op)
    # 建立评估指标
    accuracy = tf.metrics.accuracy(labels=labels,
                                   predictions=predictions['classes'])
    precision = tf.metrics.precision(labels=labels,
                                     predictions=predictions['classes'])
    recall = tf.metrics.recall(labels=labels,
                               predictions=predictions['classes'])
    coe = streaming_pearson_correlation(predictions=tf.to_float(
        predictions['classes']),
                                        labels=tf.to_float(labels))
    evaluate = {
        'accuracy': accuracy,
        'precision': precision,
        'recall': recall,
        'coef': coe
    }
    return tensorflow_estimator.estimator.EstimatorSpec(
        mode=mode, loss=loss, eval_metric_ops=evaluate)
Example #5
0
def pearson(y_true, y_pred):
    result = streaming_pearson_correlation(y_true, y_pred)
    return result[0]
Example #6
0
def cnn_framework(features, labels, mode):
    #输入层
    input_layer = tf.reshape(features, [-1, 256, 128, 1])
    #卷积层1
    conv1 = tf.layers.conv2d(inputs=input_layer,
                             filters=32,
                             kernel_size=[5, 128],
                             padding='valid',
                             activation=tf.nn.tanh)
    #输出张量:[252,1,32]
    #池化层1
    pool1 = tf.layers.max_pooling2d(inputs=conv1,
                                    pool_size=[2, 1],
                                    strides=[2, 1])
    #输出张量:[126,1,32]

    #全连接层
    #将pool1扁平化
    flat = tf.reshape(pool1, [-1, 126 * 1 * 32])
    #全连接层
    dense = tf.layers.dense(inputs=flat, units=1024, activation=tf.nn.tanh)
    #为改善模型效果,对全连接层应用丢弃正则化
    dropout = tf.layers.dropout(
        inputs=dense,
        rate=0.4,
        training=mode == tensorflow_estimator.estimator.ModeKeys.TRAIN)

    #对数层
    logits = tf.layers.dense(inputs=dropout, units=8)

    #生成预测(字典,分别为单值预测和概率预测)
    predictions = {
        'classes': tf.argmax(input=logits, axis=1),
        'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
    }

    #预测功能:当mode处于预测模式时,返回字典predictions作为对样本的分类预测结果
    if mode == tensorflow_estimator.estimator.ModeKeys.PREDICT:
        return tensorflow_estimator.estimator.EstimatorSpec(
            mode=mode, predictions=predictions)

    #损失计算(mode处于训练模式),使用交叉熵作为损失指标
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

    #配置训练操作
    if mode == tensorflow_estimator.estimator.ModeKeys.TRAIN:
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
        op = optimizer.minimize(loss=loss,
                                global_step=tf.train.get_global_step())
        return tensorflow_estimator.estimator.EstimatorSpec(mode=mode,
                                                            loss=loss,
                                                            train_op=op)

    accuracy = tf.metrics.accuracy(labels=labels,
                                   predictions=predictions['classes'])
    precision = tf.metrics.precision(labels=labels,
                                     predictions=predictions['classes'])
    recall = tf.metrics.recall(labels=labels,
                               predictions=predictions['classes'])
    # labels64=tf.constant(labels,name='labels64',dtype=tf.int64)
    # predictions64=tf.constant(predictions['classes'],name='predictions64',dtype=tf.int64)
    coe = streaming_pearson_correlation(
        predictions=tf.to_float(predictions['classes']),
        # labels=labels
        labels=tf.to_float(labels))
    # f_score=tf.contrib.metrics.f1_score(
    #         labels=labels,
    #         predictions=predictions['classes']
    #     )
    #建立评估指标
    evaluate = {
        'accuracy': accuracy,
        'precision': precision,
        'recall': recall,
        'coef': coe
        # 'f_score':f_score
    }
    return tensorflow_estimator.estimator.EstimatorSpec(
        mode=mode, loss=loss, eval_metric_ops=evaluate)
 def metric_fn(label_ids, predictions, is_real_example):
   from tensorflow.contrib.metrics import streaming_pearson_correlation
   eval_pearson_cosine = streaming_pearson_correlation(predictions, label_ids)
   return {
       "eval_pearson_cosine": eval_pearson_cosine
   }