def _check_quantization(self, model_fn):
        checkpoint_dir = self.get_temp_dir()

        with tf.Graph().as_default() as training_graph:
            model_fn(is_training=True)
            contrib_quantize.experimental_create_training_graph(training_graph)
            with self.session(graph=training_graph) as sess:
                sess.run(tf.global_variables_initializer())
                tf.train.Saver().save(sess, checkpoint_dir)

        with tf.Graph().as_default() as eval_graph:
            model_fn(is_training=False)
            contrib_quantize.experimental_create_eval_graph(eval_graph)
            with self.session(graph=eval_graph) as sess:
                tf.train.Saver().restore(sess, checkpoint_dir)
Example #2
0
    def graph_rewrite_fn():
        """Function to quantize weights and activation of the default graph."""
        if (graph_rewriter_config.quantization.weight_bits != 8
                or graph_rewriter_config.quantization.activation_bits != 8):
            raise ValueError('Only 8bit quantization is supported')

        # Quantize the graph by inserting quantize ops for weights and activations
        if is_training:
            contrib_quantize.experimental_create_training_graph(
                input_graph=tf.get_default_graph(),
                quant_delay=graph_rewriter_config.quantization.delay)
        else:
            contrib_quantize.experimental_create_eval_graph(
                input_graph=tf.get_default_graph())
        slim.summarize_collection('quant_vars')
Example #3
0
 def model_func(image):
     K.set_learning_phase(mode == "train")
     with tf_compat.forward_compatibility_horizon(2019, 6, 5):
         m = tf.keras.models.clone_model(model, input_tensors=image)
         if quant_type != "none":
             with tf.variable_scope('quants', reuse=tf.AUTO_REUSE):
                 if mode == "train":
                     tf_quantize.experimental_create_training_graph(
                         tf.get_default_graph(),
                         quant_delay=quant_delay,
                         quant_type=quant_type)
                 else:
                     tf_quantize.experimental_create_eval_graph(
                         tf.get_default_graph(), quant_type=quant_type)
     return m
    def graph_rewrite_fn():
        """Function to quantize weights and activation of the default graph."""
        if (graph_rewriter_config.quantization.weight_bits != 8
                or graph_rewriter_config.quantization.activation_bits != 8):
            raise ValueError('Only 8bit quantization is supported')

        graph = tf.get_default_graph()

        # Insert custom quant ops.
        if quant_overrides_config is not None:
            input_to_ops_map = input_to_ops.InputToOps(graph)
            for q in quant_overrides_config.quant_configs:
                producer = graph.get_operation_by_name(q.op_name)
                if producer is None:
                    raise ValueError('Op name does not exist in graph.')
                context = _get_context_from_op(producer)
                consumers = input_to_ops_map.ConsumerOperations(producer)
                if q.fixed_range:
                    _insert_fixed_quant_op(
                        context,
                        q.quant_op_name,
                        producer,
                        consumers,
                        init_min=q.min,
                        init_max=q.max,
                        quant_delay=q.delay if is_training else 0)
                else:
                    raise ValueError('Learned ranges are not yet supported.')

        # Quantize the graph by inserting quantize ops for weights and activations
        if is_training:
            contrib_quantize.experimental_create_training_graph(
                input_graph=graph,
                quant_delay=graph_rewriter_config.quantization.delay,
                freeze_bn_delay=graph_rewriter_config.quantization.delay)
        else:
            contrib_quantize.experimental_create_eval_graph(
                input_graph=graph,
                quant_delay=graph_rewriter_config.quantization.delay
                if not is_export else 0)

        contrib_layers.summarize_collection('quant_vars')
Example #5
0
        keep_prob = tf.placeholder(tf.float32, name='prob')
        model = CNNmodel.CNNModel()
        y_conv = model.create_model(x)
        cross_entropy = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(labels=y_, logits=y_conv))

        restore_dict = {}
        reader = tf.train.NewCheckpointReader(per_trained_model_path)
        for v in tf.global_variables():
            tensor_name = v.name.split(':')[0]
            if reader.has_tensor(tensor_name):
                restore_dict[tensor_name] = v

        #tf.contrib.quantize.create_eval_graph(input_graph=sess.graph)
        experimental_create_training_graph(input_graph=sess.graph,
                                           weight_bits=8,
                                           activation_bits=8)

        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())

        saver = tf.train.Saver(restore_dict)
        saver.restore(sess, per_trained_model_path)

        #这是训练时,查看插入伪量化节点是否成功的玩意
        for node in sess.graph.as_graph_def().node:
            if 'AssignMaxLast' in node.name or 'AssignMinLast' in node.name:
                print('node name: {}'.format(node.name))
Example #6
0
glorot_init = keras.initializers.glorot_uniform()

model = keras.Sequential([
    keras.layers.Dense(5,
                       input_dim=2,
                       activation=tf.nn.relu,
                       kernel_initializer=glorot_init),
    keras.layers.Dense(1,
                       activation=tf.nn.sigmoid,
                       kernel_initializer=glorot_init)
])

if args.train:
    quantize.experimental_create_training_graph(weight_bits=8,
                                                activation_bits=8,
                                                quant_delay=5000)

    model.compile(optimizer=tf.keras.optimizers.Adam(),
                  loss=tf.keras.losses.binary_crossentropy,
                  metrics=['accuracy'])
    sess.run(tf.global_variables_initializer())
    model.fit(data, labels, epochs=10000)
    tf.train.Saver().save(sess, checkpoint_prefix)

    test_loss, test_acc = model.evaluate(data, labels)

    print('Test accuracy:', test_acc)
else:
    quantize.experimental_create_eval_graph(weight_bits=8, activation_bits=8)
    tf.train.Saver().restore(sess, checkpoint_prefix)
Example #7
0
def train(create_tensor_dict_fn,
          create_model_fn,
          train_config,
          master,
          task,
          num_clones,
          worker_replicas,
          clone_on_cpu,
          ps_tasks,
          worker_job_name,
          is_chief,
          train_dir,
          graph_hook_fn=None,
          quantize=False):
    """Training function for detection models.

  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
    graph_hook_fn: Optional function that is called after the training graph is
      completely built. This is helpful to perform additional changes to the
      training graph such as optimizing batchnorm. The function should modify
      the default graph.
  """

    detection_model = create_model_fn()
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]

    with tf.Graph().as_default():
        # Build a configuration specifying multi-GPU and multi-replicas.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=num_clones,
            clone_on_cpu=clone_on_cpu,
            replica_id=task,
            num_replicas=worker_replicas,
            num_ps_tasks=ps_tasks,
            worker_job_name=worker_job_name)

        # Place the global step on the device storing the variables.
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        with tf.device(deploy_config.inputs_device()):
            input_queue = create_input_queue(
                train_config.batch_size // num_clones, create_tensor_dict_fn,
                train_config.batch_queue_capacity,
                train_config.num_batch_queue_threads,
                train_config.prefetch_queue_capacity,
                data_augmentation_options)

        # Gather initial summaries.
        # TODO(rathodv): See if summaries can be added/extracted from global tf
        # collections so that they don't have to be passed around.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        global_summaries = set([])

        model_fn = functools.partial(_create_losses,
                                     create_model_fn=create_model_fn,
                                     train_config=train_config)
        clones = model_deploy.create_clones(deploy_config, model_fn,
                                            [input_queue])
        first_clone_scope = clones[0].scope

        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by model_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        with tf.device(deploy_config.optimizer_device()):
            training_optimizer, optimizer_summary_vars = optimizer_builder.build(
                train_config.optimizer)
            for var in optimizer_summary_vars:
                tf.summary.scalar(var.op.name, var, family='LearningRate')

        sync_optimizer = None
        if train_config.sync_replicas:
            training_optimizer = tf.train.SyncReplicasOptimizer(
                training_optimizer,
                replicas_to_aggregate=train_config.replicas_to_aggregate,
                total_num_replicas=worker_replicas)
            sync_optimizer = training_optimizer

        # Create ops required to initialize the model from a given checkpoint.
        init_fn = None
        if train_config.fine_tune_checkpoint:
            if not train_config.fine_tune_checkpoint_type:
                # train_config.from_detection_checkpoint field is deprecated. For
                # backward compatibility, fine_tune_checkpoint_type is set based on
                # from_detection_checkpoint.
                if train_config.from_detection_checkpoint:
                    train_config.fine_tune_checkpoint_type = 'detection'
                else:
                    train_config.fine_tune_checkpoint_type = 'classification'
            var_map = detection_model.restore_map(
                fine_tune_checkpoint_type=train_config.
                fine_tune_checkpoint_type,
                load_all_detection_checkpoint_vars=(
                    train_config.load_all_detection_checkpoint_vars))
            available_var_map = (
                variables_helper.get_variables_available_in_checkpoint(
                    var_map, train_config.fine_tune_checkpoint))
            init_saver = tf.train.Saver(available_var_map)

            def initializer_fn(sess):
                init_saver.restore(sess, train_config.fine_tune_checkpoint)

            init_fn = initializer_fn

        with tf.device(deploy_config.optimizer_device()):
            regularization_losses = (
                None if train_config.add_regularization_loss else [])
            total_loss, grads_and_vars = model_deploy.optimize_clones(
                clones,
                training_optimizer,
                regularization_losses=regularization_losses)
            total_loss = tf.check_numerics(total_loss,
                                           'LossTensor is inf or nan.')

            # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
            if train_config.bias_grad_multiplier:
                biases_regex_list = ['.*/biases']
                grads_and_vars = variables_helper.multiply_gradients_matching_regex(
                    grads_and_vars,
                    biases_regex_list,
                    multiplier=train_config.bias_grad_multiplier)

            # Optionally freeze some layers by setting their gradients to be zero.
            if train_config.freeze_variables:
                grads_and_vars = variables_helper.freeze_gradients_matching_regex(
                    grads_and_vars, train_config.freeze_variables)

            # Optionally clip gradients
            if train_config.gradient_clipping_by_norm > 0:
                with tf.name_scope('clip_grads'):
                    grads_and_vars = slim.learning.clip_gradient_norms(
                        grads_and_vars, train_config.gradient_clipping_by_norm)

            # Create gradient updates.
            grad_updates = training_optimizer.apply_gradients(
                grads_and_vars, global_step=global_step)
            update_ops.append(grad_updates)
            update_op = tf.group(*update_ops, name='update_barrier')
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        if graph_hook_fn:
            with tf.device(deploy_config.variables_device()):
                graph_hook_fn()

        if quantize:
            from tensorflow.contrib.quantize import experimental_create_training_graph
            experimental_create_training_graph(freeze_bn_delay=None)
            # g = tf.get_default_graph()
            # print(g.get_operations())

        # Add summaries.
        for model_var in slim.get_model_variables():
            global_summaries.add(
                tf.summary.histogram('ModelVars/' + model_var.op.name,
                                     model_var))
        for loss_tensor in tf.losses.get_losses():
            global_summaries.add(
                tf.summary.scalar('Losses/' + loss_tensor.op.name,
                                  loss_tensor))
        global_summaries.add(
            tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss()))

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
        summaries |= global_summaries

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # Soft placement allows placing on CPU ops without GPU implementation.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)

        # Save checkpoints regularly.
        keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
        saver = tf.train.Saver(
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)

        slim.learning.train(
            train_tensor,
            logdir=train_dir,
            master=master,
            is_chief=is_chief,
            session_config=session_config,
            startup_delay_steps=train_config.startup_delay_steps,
            init_fn=init_fn,
            summary_op=summary_op,
            number_of_steps=(train_config.num_steps
                             if train_config.num_steps else None),
            save_summaries_secs=120,
            sync_optimizer=sync_optimizer,
            saver=saver)
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        #######################
        # Config model_deploy #
        #######################
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=FLAGS.num_clones,
            clone_on_cpu=FLAGS.clone_on_cpu,
            replica_id=FLAGS.task,
            num_replicas=FLAGS.worker_replicas,
            num_ps_tasks=FLAGS.num_ps_tasks)

        # Create global_step
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        ######################
        # Select the dataset #
        ######################
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        ######################
        # Select the network #
        ######################
        network_fn = nets_factory.get_network_fn(
            FLAGS.model_name,
            num_classes=(dataset.num_classes - FLAGS.labels_offset),
            weight_decay=FLAGS.weight_decay,
            is_training=True)

        #####################################
        # Select the preprocessing function #
        #####################################
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name,
            is_training=True,
            use_grayscale=FLAGS.use_grayscale)

        ##############################################################
        # Create a dataset provider that loads data from the dataset #
        ##############################################################
        with tf.device(deploy_config.inputs_device()):
            provider = slim.dataset_data_provider.DatasetDataProvider(
                dataset,
                num_readers=FLAGS.num_readers,
                common_queue_capacity=20 * FLAGS.batch_size,
                common_queue_min=10 * FLAGS.batch_size)
            [image, label] = provider.get(['image', 'label'])
            label -= FLAGS.labels_offset

            train_image_size = FLAGS.train_image_size or network_fn.default_image_size

            image = image_preprocessing_fn(image, train_image_size,
                                           train_image_size)

            images, labels = tf.train.batch(
                [image, label],
                batch_size=FLAGS.batch_size,
                num_threads=FLAGS.num_preprocessing_threads,
                capacity=5 * FLAGS.batch_size)
            labels = slim.one_hot_encoding(
                labels, dataset.num_classes - FLAGS.labels_offset)
            batch_queue = slim.prefetch_queue.prefetch_queue(
                [images, labels], capacity=2 * deploy_config.num_clones)

        ####################
        # Define the model #
        ####################
        def clone_fn(batch_queue):
            """Allows data parallelism by creating multiple clones of network_fn."""
            images, labels = batch_queue.dequeue()
            logits, end_points = network_fn(images)

            #loss_weights = tf.constant([0.2, 0, 0, 0.8], shape=[2, 2])
            #loss_weights = tf.linalg.matmul(labels, loss_weights)
            #loss_weights = tf.reduce_sum(loss_weights, 1)
            #############################
            # Specify the loss function #
            #############################
            if 'AuxLogits' in end_points:
                slim.losses.softmax_cross_entropy(
                    end_points['AuxLogits'],
                    labels,
                    label_smoothing=FLAGS.label_smoothing,
                    weights=0.4,
                    scope='aux_loss')
            slim.losses.softmax_cross_entropy(
                logits,
                labels,
                label_smoothing=FLAGS.label_smoothing,
                weights=1.0)
            return end_points

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        clones = model_deploy.create_clones(deploy_config, clone_fn,
                                            [batch_queue])
        first_clone_scope = deploy_config.clone_scope(0)
        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by network_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        # Add summaries for end_points.
        end_points = clones[0].outputs
        for end_point in end_points:
            x = end_points[end_point]
            summaries.add(tf.summary.histogram('activations/' + end_point, x))
            summaries.add(
                tf.summary.scalar('sparsity/' + end_point,
                                  tf.nn.zero_fraction(x)))

        # Add summaries for losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))

        # Add summaries for variables.
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        #################################
        # Configure the moving averages #
        #################################
        if FLAGS.moving_average_decay:
            moving_average_variables = slim.get_model_variables()
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, global_step)
        else:
            moving_average_variables, variable_averages = None, None

        if FLAGS.quantize_delay >= 0:
            #contrib_quantize.create_training_graph(quant_delay=FLAGS.quantize_delay)
            contrib_quantize.experimental_create_training_graph(
                symmetric=FLAGS.quantize_sym,
                weight_bits=8,
                activation_bits=8,
                quant_delay=FLAGS.quantize_delay,
                freeze_bn_delay=FLAGS.freeze_bn_delay)

        #########################################
        # Configure the optimization procedure. #
        #########################################
        with tf.device(deploy_config.optimizer_device()):
            learning_rate = _configure_learning_rate(dataset.num_samples,
                                                     global_step)
            optimizer = _configure_optimizer(learning_rate)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        if FLAGS.sync_replicas:
            # If sync_replicas is enabled, the averaging will be done in the chief
            # queue runner.
            optimizer = tf.train.SyncReplicasOptimizer(
                opt=optimizer,
                replicas_to_aggregate=FLAGS.replicas_to_aggregate,
                total_num_replicas=FLAGS.worker_replicas,
                variable_averages=variable_averages,
                variables_to_average=moving_average_variables)
        elif FLAGS.moving_average_decay:
            # Update ops executed locally by trainer.
            update_ops.append(
                variable_averages.apply(moving_average_variables))

        # Variables to train.
        variables_to_train = _get_variables_to_train()

        #  and returns a train_tensor and summary_op
        total_loss, clones_gradients = model_deploy.optimize_clones(
            clones, optimizer, var_list=variables_to_train)
        # Add total_loss to summary.
        summaries.add(tf.summary.scalar('total_loss', total_loss))

        # Create gradient updates.
        grad_updates = optimizer.apply_gradients(clones_gradients,
                                                 global_step=global_step)
        update_ops.append(grad_updates)

        update_op = tf.group(*update_ops)
        with tf.control_dependencies([update_op]):
            train_tensor = tf.identity(total_loss, name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        ###########################
        # Kicks off the training. #
        ###########################
        slim.learning.train(
            train_tensor,
            logdir=FLAGS.train_dir,
            master=FLAGS.master,
            is_chief=(FLAGS.task == 0),
            init_fn=_get_init_fn(),
            summary_op=summary_op,
            number_of_steps=FLAGS.max_number_of_steps,
            log_every_n_steps=FLAGS.log_every_n_steps,
            save_summaries_secs=FLAGS.save_summaries_secs,
            save_interval_secs=FLAGS.save_interval_secs,
            sync_optimizer=optimizer if FLAGS.sync_replicas else None)