Example #1
0
  def testDecodeExampleWithRepeatedImages(self):
    image_shape = (2, 3, 3)
    image_format = 'png'
    image, _ = self.GenerateImage(
        image_format=image_format, image_shape=image_shape)
    tf_encoded = self._Encoder(image, image_format)
    with self.cached_session():
      tf_string = tf_encoded.eval()

    example = example_pb2.Example(
        features=feature_pb2.Features(
            feature={
                'image/encoded':
                    feature_pb2.Feature(
                        bytes_list=feature_pb2.BytesList(
                            value=[tf_string, tf_string])),
                'image/format':
                    self._StringFeature(image_format),
            }))
    serialized_example = example.SerializeToString()

    with self.cached_session():
      serialized_example = array_ops.reshape(serialized_example, shape=[])

      decoder = tfexample_decoder.TFExampleDecoder(
          keys_to_features={
              'image/encoded':
                  parsing_ops.FixedLenFeature((2,), dtypes.string),
              'image/format':
                  parsing_ops.FixedLenFeature(
                      (), dtypes.string, default_value=image_format),
          },
          items_to_handlers={'image': tfexample_decoder.Image(repeated=True)})
      [tf_image] = decoder.decode(serialized_example, ['image'])

      output_image = tf_image.eval()

      self.assertEqual(output_image.shape, (2, 2, 3, 3))
      self.assertAllEqual(np.squeeze(output_image[0, :, :, :]), image)
      self.assertAllEqual(np.squeeze(output_image[1, :, :, :]), image)
Example #2
0
  def testDecodeExampleWithItemHandlerCallback(self):
    np.random.seed(0)
    tensor_shape = (2, 3, 1)
    np_array = np.random.rand(2, 3, 1)

    example = example_pb2.Example(
        features=feature_pb2.Features(feature={
            'image/depth_map': self._EncodedFloatFeature(np_array),
        }))

    serialized_example = example.SerializeToString()

    with self.cached_session():
      serialized_example = array_ops.reshape(serialized_example, shape=[])

      keys_to_features = {
          'image/depth_map':
              parsing_ops.FixedLenFeature(
                  tensor_shape,
                  dtypes.float32,
                  default_value=array_ops.zeros(tensor_shape))
      }

      def HandleDepth(keys_to_tensors):
        depth = list(keys_to_tensors.values())[0]
        depth += 1
        return depth

      items_to_handlers = {
          'depth':
              tfexample_decoder.ItemHandlerCallback('image/depth_map',
                                                    HandleDepth)
      }

      decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                   items_to_handlers)
      [tf_depth] = decoder.decode(serialized_example, ['depth'])
      depth = tf_depth.eval()

    self.assertAllClose(np_array, depth - 1)
Example #3
0
  def testDecodeExampleWithBoundingBoxSparse(self):
    num_bboxes = 10
    np_ymin = np.random.rand(num_bboxes, 1)
    np_xmin = np.random.rand(num_bboxes, 1)
    np_ymax = np.random.rand(num_bboxes, 1)
    np_xmax = np.random.rand(num_bboxes, 1)
    np_bboxes = np.hstack([np_ymin, np_xmin, np_ymax, np_xmax])

    example = example_pb2.Example(
        features=feature_pb2.Features(
            feature={
                'image/object/bbox/ymin': self._EncodedFloatFeature(np_ymin),
                'image/object/bbox/xmin': self._EncodedFloatFeature(np_xmin),
                'image/object/bbox/ymax': self._EncodedFloatFeature(np_ymax),
                'image/object/bbox/xmax': self._EncodedFloatFeature(np_xmax),
            }))
    serialized_example = example.SerializeToString()

    with self.cached_session():
      serialized_example = array_ops.reshape(serialized_example, shape=[])

      keys_to_features = {
          'image/object/bbox/ymin': parsing_ops.VarLenFeature(dtypes.float32),
          'image/object/bbox/xmin': parsing_ops.VarLenFeature(dtypes.float32),
          'image/object/bbox/ymax': parsing_ops.VarLenFeature(dtypes.float32),
          'image/object/bbox/xmax': parsing_ops.VarLenFeature(dtypes.float32),
      }

      items_to_handlers = {
          'object/bbox':
              tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
                                            'image/object/bbox/'),
      }

      decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                   items_to_handlers)
      [tf_bboxes] = decoder.decode(serialized_example, ['object/bbox'])
      bboxes = tf_bboxes.eval()

    self.assertAllClose(np_bboxes, bboxes)
Example #4
0
  def testDecodeExampleWithInt64Tensor(self):
    np_array = np.random.randint(1, 10, size=(2, 3, 1))

    example = example_pb2.Example(
        features=feature_pb2.Features(feature={
            'array': self._EncodedInt64Feature(np_array),
        }))

    serialized_example = example.SerializeToString()

    with self.cached_session():
      serialized_example = array_ops.reshape(serialized_example, shape=[])
      keys_to_features = {
          'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.int64)
      }
      items_to_handlers = {
          'array': tfexample_decoder.Tensor('array'),
      }
      decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                   items_to_handlers)
      [tf_array] = decoder.decode(serialized_example, ['array'])
      self.assertAllEqual(tf_array.eval(), np_array)
Example #5
0
  def testDecodeExampleWithVarLenTensorToDense(self):
    np_array = np.array([[1, 2, 3], [4, 5, 6]])
    example = example_pb2.Example(
        features=feature_pb2.Features(feature={
            'labels': self._EncodedInt64Feature(np_array),
        }))

    serialized_example = example.SerializeToString()

    with self.cached_session():
      serialized_example = array_ops.reshape(serialized_example, shape=[])
      keys_to_features = {
          'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
      }
      items_to_handlers = {
          'labels': tfexample_decoder.Tensor('labels', shape=np_array.shape),
      }
      decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                   items_to_handlers)
      [tf_labels] = decoder.decode(serialized_example, ['labels'])
      labels = tf_labels.eval()
      self.assertAllEqual(labels, np_array)
  def parse_example_factory():
    """Parse example factory."""

    def _int64_feature(*values):
      return feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=values))

    def _bytes_feature(*values):
      return feature_pb2.Feature(
          bytes_list=feature_pb2.BytesList(
              value=[v.encode("utf-8") for v in values]))

    return dataset_ops.Dataset.from_tensor_slices(
        constant_op.constant([
            example_pb2.Example(
                features=feature_pb2.Features(
                    feature={
                        "dense_int": _int64_feature(i),
                        "dense_str": _bytes_feature(str(i)),
                        "sparse_int": _int64_feature(i, i * 2, i * 4, i * 8),
                        "sparse_str": _bytes_feature(*["abc"] * i)
                    })).SerializeToString() for i in range(10)
        ]))
Example #7
0
    def generate_image(self, image_format, image_shape):
        """Generates an image and an example containing the encoded image.

        Args:
            image_format: the encoding format of the image.
            image_shape: the shape of the image to generate.
    
        Returns:
            image: the generated image.
            example: a TF-example with a feature key 'image/encoded' set to the
                serialized image and a feature key 'image/format' set to the image
                encoding format ['jpeg', 'JPEG', 'png', 'PNG', 'raw'].
        """
        num_pixels = image_shape[0] * image_shape[1] * image_shape[2]
        image = np.linspace(0, num_pixels - 1, num=num_pixels).reshape(image_shape).astype(np.uint8)
        tf_encoded = self._encode(image, image_format)
        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'image/encoded': self._encode_bytes_feature(tf_encoded),
            'image/format': self._string_feature(image_format)
        }))

        return image, example.SerializeToString()
    def testDecodeExampleShapeKeyTensor(self):
        np_image = np.random.rand(2, 3, 1).astype('f')
        np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]])

        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'image':
                self._EncodedFloatFeature(np_image),
                'image/shape':
                self._EncodedInt64Feature(np.array(np_image.shape)),
                'labels':
                self._EncodedInt64Feature(np_labels),
                'labels/shape':
                self._EncodedInt64Feature(np.array(np_labels.shape)),
            }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example,
                                                   shape=[])
            keys_to_features = {
                'image': parsing_ops.VarLenFeature(dtype=dtypes.float32),
                'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
            }
            items_to_handlers = {
                'image':
                tfexample_decoder.Tensor('image', shape_keys='image/shape'),
                'labels':
                tfexample_decoder.Tensor('labels', shape_keys='labels/shape'),
            }
            decoder = tfexample_decoder.TFExampleDecoder(
                keys_to_features, items_to_handlers)
            [tf_image, tf_labels] = decoder.decode(serialized_example,
                                                   ['image', 'labels'])
            self.assertAllEqual(tf_image.eval(), np_image)
            self.assertAllEqual(tf_labels.eval(), np_labels)
Example #9
0
def _create_tf_example(feature_dict):
    """
    Creates a tf example protobuf message given a feature dict. The protobuf message is defined here
        https://github.com/tensorflow/serving/blob/master/tensorflow_serving/apis/input.proto#L19
    Args:
        feature_dict (dict of str -> feature): feature can be any of the following:
          int, strings, unicode object, float, or list of any of the previous types.

    Returns:
        a tf.train.Example including the features
    """
    def _create_feature(feature):
        feature_list = feature if isinstance(feature, list) else [feature]

        # Each feature can be exactly one kind:
        # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/example/feature.proto#L76

        feature_type = type(feature_list[0])
        if feature_type == int:
            return feature_pb2.Feature(int64_list=feature_pb2.Int64List(
                value=feature_list))
        elif feature_type == str:
            return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(
                value=feature_list))
        elif feature_type == unicode:
            return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(
                value=map(lambda x: str(x), feature_list)))
        elif feature_type == float:
            return feature_pb2.Feature(float_list=feature_pb2.FloatList(
                value=feature_list))
        else:
            message = """Unsupported request data format: {}, {}.
                            Valid formats: float, int, str any object that implements __iter__
                                           or classification_pb2.ClassificationRequest"""
            raise ValueError(message.format(feature, type(feature)))

    features = {k: _create_feature(v) for k, v in feature_dict.items()}
    return example_pb2.Example(features=feature_pb2.Features(feature=features))
Example #10
0
    def test_decode_example_multi_shape_key_tensor(self):
        np_image = np.random.rand(2, 3, 1).astype('f')
        np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]])
        height, width, depth = np_labels.shape

        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'image': self._encode_float_feature(np_image),
            'image/shape': self._encode_int64_feature(np.array(np_image.shape)),
            'labels': self._encode_int64_feature(np_labels),
            'labels/height': self._encode_int64_feature(np.array([height])),
            'labels/width': self._encode_int64_feature(np.array([width])),
            'labels/depth': self._encode_int64_feature(np.array([depth])),
        }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example, shape=[])
            keys_to_features = {
                'image': parsing_ops.VarLenFeature(dtype=dtypes.float32),
                'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels/height': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels/width': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels/depth': parsing_ops.VarLenFeature(dtype=dtypes.int64),
            }
            items_to_handlers = {
                'image':
                    tfexample_decoder.Tensor('image', shape_keys='image/shape'),
                'labels':
                    tfexample_decoder.Tensor(
                        'labels',
                        shape_keys=['labels/height', 'labels/width', 'labels/depth']),
            }
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_image, tf_labels] = decoder.decode(serialized_example, ['image', 'labels'])
            self.assertAllEqual(tf_image.eval(), np_image)
            self.assertAllEqual(tf_labels.eval(), np_labels)
Example #11
0
    def test_decode_example_with_sparse_tensor(self):
        np_indices = np.array([[1], [2], [5]])
        np_values = np.array([0.1, 0.2, 0.6]).astype('f')
        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'indices': self._encode_int64_feature(np_indices),
            'values': self._encode_float_feature(np_values),
        }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example, shape=[])
            keys_to_features = {
                'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'values': parsing_ops.VarLenFeature(dtype=dtypes.float32),
            }
            items_to_handlers = {'labels': tfexample_decoder.SparseTensor()}
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()
            self.assertAllEqual(labels.indices, np_indices)
            self.assertAllEqual(labels.values, np_values)
            self.assertAllEqual(labels.dense_shape, np_values.shape)
Example #12
0
    def test_decode_example_with_var_len_tensor(self):
        np_array = np.array([[[1], [2], [3]], [[4], [5], [6]]])

        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'labels': self._encode_int64_feature(np_array),
            }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example,
                                                   shape=[])
            keys_to_features = {
                'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
            }
            items_to_handlers = {
                'labels': tfexample_decoder.Tensor('labels'),
            }
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()
            self.assertAllEqual(labels, np_array.flatten())
Example #13
0
    def test_decode_example_with_float_tensor(self):
        np_array = np.random.rand(2, 3, 1).astype('f')

        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'array': self._encode_float_feature(np_array),
            }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example,
                                                   shape=[])
            keys_to_features = {
                'array':
                parsing_ops.FixedLenFeature(np_array.shape, dtypes.float32)
            }
            items_to_handlers = {
                'array': tfexample_decoder.Tensor('array'),
            }
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_array] = decoder.decode(serialized_example, ['array'])
            self.assertAllEqual(tf_array.eval(), np_array)
  def test_parse_single_example(self):

    def _int64_feature(*values):
      return feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=values))

    def _bytes_feature(*values):
      return feature_pb2.Feature(
          bytes_list=feature_pb2.BytesList(
              value=[v.encode("utf-8") for v in values]))

    examples = constant_op.constant([
        example_pb2.Example(
            features=feature_pb2.Features(
                feature={
                    "dense_int": _int64_feature(i),
                    "dense_str": _bytes_feature(str(i)),
                    "sparse_int": _int64_feature(i, i * 2, i * 4, i * 8),
                    "sparse_str": _bytes_feature(*["abc"] * i)
                })).SerializeToString() for i in range(10)
    ])

    features = {
        "dense_int": parsing_ops.FixedLenFeature((), dtypes.int64, 0),
        "dense_str": parsing_ops.FixedLenFeature((), dtypes.string, ""),
        "sparse_int": parsing_ops.VarLenFeature(dtypes.int64),
        "sparse_str": parsing_ops.VarLenFeature(dtypes.string),
    }

    def loop_fn(i):
      example_proto = array_ops.gather(examples, i)
      f = parsing_ops.parse_single_example(example_proto, features)
      return f

    pfor = pfor_control_flow_ops.pfor(loop_fn, iters=10)
    manual = parsing_ops.parse_example(examples, features)
    self.run_and_assert_equal(pfor, manual)
Example #15
0
    def test_decode_example_with_string_tensor(self):
        tensor_shape = (2, 3, 1)
        np_array = np.array([[['ab'], ['cd'], ['ef']], [['ghi'], ['jkl'], ['mnop']]])

        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'labels': self._bytes_feature(np_array),
        }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example, shape=[])
            keys_to_features = {
                'labels': parsing_ops.FixedLenFeature(
                    tensor_shape, dtypes.string,
                    default_value=constant_op.constant('', shape=tensor_shape, dtype=dtypes.string))
            }
            items_to_handlers = {'labels': tfexample_decoder.Tensor('labels')}
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()

            labels = labels.astype(np_array.dtype)
            self.assertTrue(np.array_equal(np_array, labels))
Example #16
0
    def create_tf_record(self):
        path = os.path.join(self.get_temp_dir(), 'tfrecord')
        writer = tf.python_io.TFRecordWriter(path)

        image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
        with self.test_session():
            encoded_jpeg = tf.image.encode_jpeg(
                tf.constant(image_tensor)).eval()
        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'image/encoded':
                feature_pb2.Feature(bytes_list=feature_pb2.BytesList(
                    value=[encoded_jpeg])),
                'image/format':
                feature_pb2.Feature(bytes_list=feature_pb2.BytesList(
                    value=['jpeg'.encode('utf-8')])),
                'image/transcript':
                feature_pb2.Feature(bytes_list=feature_pb2.BytesList(
                    value=['hello'.encode('utf-8')]))
            }))
        writer.write(example.SerializeToString())
        writer.close()

        return path
Example #17
0
    def create_tf_record(self):
        path = os.path.join(self.get_temp_dir(), 'tfrecord')
        writer = tf.python_io.TFRecordWriter(path)

        image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
        with self.test_session():
            encoded_jpeg = tf.image.encode_jpeg(
                tf.constant(image_tensor)).eval()
        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'image/encoded':
                feature_pb2.Feature(bytes_list=feature_pb2.BytesList(
                    value=[encoded_jpeg])),
                'image/format':
                feature_pb2.Feature(bytes_list=feature_pb2.BytesList(
                    value=['jpeg'.encode('utf-8')])),
                'image/object/bbox/xmin':
                feature_pb2.Feature(float_list=feature_pb2.FloatList(
                    value=[0.0])),
                'image/object/bbox/xmax':
                feature_pb2.Feature(float_list=feature_pb2.FloatList(
                    value=[1.0])),
                'image/object/bbox/ymin':
                feature_pb2.Feature(float_list=feature_pb2.FloatList(
                    value=[0.0])),
                'image/object/bbox/ymax':
                feature_pb2.Feature(float_list=feature_pb2.FloatList(
                    value=[1.0])),
                'image/object/class/label':
                feature_pb2.Feature(int64_list=feature_pb2.Int64List(
                    value=[2])),
            }))
        writer.write(example.SerializeToString())
        writer.close()

        return path
Example #18
0
    def testSaveWithSignatures(self):
        model = keras.models.Sequential()
        model.add(
            keras.layers.Dense(5,
                               input_shape=(3, ),
                               kernel_regularizer=regularizers.get('l2')))
        model.add(keras.layers.Dropout(0.5))
        model.add(
            keras.layers.Dense(4, kernel_regularizer=regularizers.get('l2')))

        input_arr = np.random.random((2, 3))
        target_arr = np.random.random((2, 4))

        model.compile(loss='mse', optimizer='rmsprop')
        model.train_on_batch(input_arr, target_arr)

        @def_function.function(
            input_signature=[tensor_spec.TensorSpec((None, 3))])
        def predict(inputs):
            return {'predictions': model(inputs)}

        feature_configs = {
            'inputs':
            parsing_ops.FixedLenFeature(shape=[2, 3], dtype=dtypes.float32)
        }

        @def_function.function(
            input_signature=[tensor_spec.TensorSpec([None], dtypes.string)])
        def parse_and_predict(examples):
            features = parsing_ops.parse_single_example(
                examples[0], feature_configs)
            return {
                'predictions': model(features['inputs']),
                'layer_1_outputs': model.layers[0](features['inputs'])
            }

        saved_model_dir = self._save_model_dir()
        model.save(saved_model_dir,
                   save_format='tf',
                   signatures={
                       'predict': predict,
                       'parse_and_predict': parse_and_predict
                   })
        model.save('/tmp/saved',
                   save_format='tf',
                   signatures={
                       'predict': predict,
                       'parse_and_predict': parse_and_predict
                   })

        loaded = keras_load.load(saved_model_dir)

        self.assertAllClose(
            model.predict(input_arr),
            loaded.signatures['predict'](ops.convert_to_tensor_v2(
                input_arr.astype('float32')))['predictions'])

        feature = {
            'inputs':
            feature_pb2.Feature(float_list=feature_pb2.FloatList(
                value=input_arr.astype('float32').flatten()))
        }
        example = example_pb2.Example(features=feature_pb2.Features(
            feature=feature))
        outputs = loaded.signatures['parse_and_predict'](
            ops.convert_to_tensor_v2([example.SerializeToString()]))
        self.assertAllClose(model.predict(input_arr), outputs['predictions'])
        self.assertAllClose(model.layers[0](input_arr),
                            outputs['layer_1_outputs'])
Example #19
0
from tensorflow.python.data.experimental.ops import parsing_ops as contrib_parsing_ops
from tensorflow.python.data.kernel_tests import test_base
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import nest
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.ops import parsing_ops
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging

# Helpers for creating Example objects
example = example_pb2.Example
feature = feature_pb2.Feature
features = lambda d: feature_pb2.Features(feature=d)
bytes_feature = lambda v: feature(bytes_list=feature_pb2.BytesList(value=v))
int64_feature = lambda v: feature(int64_list=feature_pb2.Int64List(value=v))
float_feature = lambda v: feature(float_list=feature_pb2.FloatList(value=v))
# Helpers for creating SequenceExample objects
feature_list = lambda l: feature_pb2.FeatureList(feature=l)
feature_lists = lambda d: feature_pb2.FeatureLists(feature_list=d)
sequence_example = example_pb2.SequenceExample


def _compare_output_to_expected(tester, dict_tensors, expected_tensors,
                                flat_output):
  tester.assertEqual(set(dict_tensors.keys()), set(expected_tensors.keys()))

  i = 0  # Index into the flattened output of session.run()
  for k, v in sorted(dict_tensors.items()):
Example #20
0
 def get_example_proto(cls):
     return [example_pb2.Example(features=feature_pb2.Features(feature={
         k: feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=[v]))
         for k, v in d.items()
     })) for d in cls.values]
Example #21
0
    def test_input_fn_from_parse_example(self):
        """Tests complete flow with input_fn constructed from parse_example."""
        label_dimension = 2
        input_dimension = label_dimension
        batch_size = 10
        prediction_length = batch_size
        data = np.linspace(0.,
                           2.,
                           batch_size * label_dimension,
                           dtype=np.float32)
        data = data.reshape(batch_size, label_dimension)

        serialized_examples = []
        for datum in data:
            example = example_pb2.Example(features=feature_pb2.Features(
                feature={
                    'x':
                    feature_pb2.Feature(float_list=feature_pb2.FloatList(
                        value=datum)),
                    'y':
                    feature_pb2.Feature(float_list=feature_pb2.FloatList(
                        value=datum[:label_dimension])),
                }))
            serialized_examples.append(example.SerializeToString())

        feature_spec = {
            'x': parsing_ops.FixedLenFeature([input_dimension],
                                             dtypes.float32),
            'y': parsing_ops.FixedLenFeature([label_dimension],
                                             dtypes.float32),
        }

        def _train_input_fn():
            feature_map = parsing_ops.parse_example(serialized_examples,
                                                    feature_spec)
            features = queue_parsed_features(feature_map)
            labels = features.pop('y')
            return features, labels

        def _eval_input_fn():
            feature_map = parsing_ops.parse_example(
                input_lib.limit_epochs(serialized_examples, num_epochs=1),
                feature_spec)
            features = queue_parsed_features(feature_map)
            labels = features.pop('y')
            return features, labels

        def _predict_input_fn():
            feature_map = parsing_ops.parse_example(
                input_lib.limit_epochs(serialized_examples, num_epochs=1),
                feature_spec)
            features = queue_parsed_features(feature_map)
            features.pop('y')
            return features, None

        self._test_complete_flow(train_input_fn=_train_input_fn,
                                 eval_input_fn=_eval_input_fn,
                                 predict_input_fn=_predict_input_fn,
                                 input_dimension=input_dimension,
                                 label_dimension=label_dimension,
                                 prediction_length=prediction_length)
Example #22
0
    def testParseExampleInputFn(self):
        """Tests complete flow with input_fn constructed from parse_example."""
        n_classes = 3
        batch_size = 10
        words = [
            b'dog', b'cat', b'bird', b'the', b'a', b'sat', b'flew', b'slept'
        ]

        _, examples_file = tempfile.mkstemp()
        writer = python_io.TFRecordWriter(examples_file)
        for _ in range(batch_size):
            sequence_length = random.randint(1, len(words))
            sentence = random.sample(words, sequence_length)
            label = random.randint(0, n_classes - 1)
            example = example_pb2.Example(features=feature_pb2.Features(
                feature={
                    'tokens':
                    feature_pb2.Feature(bytes_list=feature_pb2.BytesList(
                        value=sentence)),
                    'label':
                    feature_pb2.Feature(int64_list=feature_pb2.Int64List(
                        value=[label])),
                }))
            writer.write(example.SerializeToString())
        writer.close()

        col = seq_fc.sequence_categorical_column_with_hash_bucket(
            'tokens', hash_bucket_size=10)
        embed = fc.embedding_column(col, dimension=2)
        feature_columns = [embed]
        feature_spec = parsing_utils.classifier_parse_example_spec(
            feature_columns, label_key='label', label_dtype=dtypes.int64)

        def _train_input_fn():
            dataset = readers.make_batched_features_dataset(
                examples_file, batch_size, feature_spec)
            return dataset.map(lambda features:
                               (features, features.pop('label')))

        def _eval_input_fn():
            dataset = readers.make_batched_features_dataset(examples_file,
                                                            batch_size,
                                                            feature_spec,
                                                            num_epochs=1)
            return dataset.map(lambda features:
                               (features, features.pop('label')))

        def _predict_input_fn():
            dataset = readers.make_batched_features_dataset(examples_file,
                                                            batch_size,
                                                            feature_spec,
                                                            num_epochs=1)

            def features_fn(features):
                features.pop('label')
                return features

            return dataset.map(features_fn)

        self._test_complete_flow(feature_columns=feature_columns,
                                 train_input_fn=_train_input_fn,
                                 eval_input_fn=_eval_input_fn,
                                 predict_input_fn=_predict_input_fn,
                                 n_classes=n_classes,
                                 batch_size=batch_size)
Example #23
0
 def test_label_from_example(self, truth_label):
     feature = {'label': _int_feature([truth_label])}
     example = example_pb2.Example(features=feature_pb2.Features(
         feature=feature))
     output = vis.label_from_example(example)
     self.assertEqual(truth_label, output)