Example #1
0
    def DNN_Classifier(self, X_train, X_test, y_train, y_test):
        scaler = MinMaxScaler()
        scaled_x_train = scaler.fit_transform(X_train)
        scaled_x_test = scaler.transform(X_test)
        feat_cols = [
            tf.feature_column.numeric_column("x", shape=[self.NUMBER_FEATURES])
        ]

        deep_model = estimator.DNNClassifier(
            hidden_units=[
                self.NUMBER_FEATURES, self.NUMBER_FEATURES,
                self.NUMBER_FEATURES
            ],
            feature_columns=feat_cols,
            n_classes=self.N_CLASSES,
            optimizer=tf.train.GradientDescentOptimizer(
                learning_rate=self.LEARNING_RATE))

        input_fn = estimator.inputs.numpy_input_fn(x={'x': scaled_x_train},
                                                   y=y_train,
                                                   shuffle=True,
                                                   batch_size=self.BATCH_SIZE,
                                                   num_epochs=self.NUM_EPOCHS)

        deep_model.train(input_fn=input_fn, steps=self.STEPS)

        input_fn_eval = estimator.inputs.numpy_input_fn(x={'x': scaled_x_test},
                                                        shuffle=False)

        #return list(deep_model.predict(input_fn=input_fn_eval))
        return deep_model.predict(input_fn=input_fn_eval,
                                  predict_keys='probabilities')
Example #2
0
def get_simple_dnn_classifier_and_metadata(n_classes=2, label_vocabulary=None):
    """Returns metadata for creating simple DNN classifier."""
    if label_vocabulary:
        feature_spec = tf.feature_column.make_parse_example_spec(
            feature_columns=util.dnn_columns(False, n_classes=n_classes))
        feature_spec['label'] = tf.io.FixedLenFeature(shape=[1],
                                                      dtype=tf.string)
    else:
        feature_spec = tf.feature_column.make_parse_example_spec(
            feature_columns=util.dnn_columns(True, n_classes=n_classes))
    classifier = tf_estimator.DNNClassifier(
        hidden_units=[4],
        feature_columns=util.dnn_columns(False),
        n_classes=n_classes,
        label_vocabulary=label_vocabulary,
        loss_reduction=tf.losses.Reduction.SUM)
    classifier = tf_estimator.add_metrics(classifier,
                                          util.classifier_extra_metrics)
    return {
        'estimator':
        classifier,
        'serving_input_receiver_fn':
        (tf_estimator.export.build_parsing_serving_input_receiver_fn(
            tf.feature_column.make_parse_example_spec(
                util.dnn_columns(False)))),
        'eval_input_receiver_fn':
        build_parsing_eval_input_receiver_fn(feature_spec, label_key='label'),
        'train_input_fn':
        util.make_classifier_input_fn(feature_spec,
                                      n_classes,
                                      label_vocabulary=label_vocabulary),
    }
Example #3
0
    def testWorksWithTF2DnnClassifier(self):
        self.skipTest("b/154115879 - needs more investigation for timeout.")
        comment_embedding_column = hub.text_embedding_column_v2(
            "comment", self.model, trainable=False)
        upvotes = tf.feature_column.numeric_column("upvotes")

        feature_columns = [comment_embedding_column, upvotes]
        estimator = tf_estimator.DNNClassifier(hidden_units=[10],
                                               feature_columns=feature_columns,
                                               model_dir=self.get_temp_dir())

        # This only tests that estimator apis are working with the feature
        # column without throwing exceptions.
        def input_fn():
            features = {
                "comment":
                np.array([
                    ["the quick brown fox"],
                    ["spam spam spam"],
                ]),
                "upvotes":
                np.array([
                    [20],
                    [1],
                ]),
            }
            labels = np.array([[1], [0]])
            return features, labels

        estimator.train(input_fn, max_steps=1)
        estimator.evaluate(input_fn, steps=1)
        estimator.predict(input_fn)
def estimator():
    from tensorflow import estimator

    feat_cols = [tf.feature_column.numeric_column('x', shape=[13])]

    deep_model = estimator.DNNClassifier(
        hidden_units=[13, 13, 13],
        feature_columns=feat_cols,
        n_classes=3,
        optimizer=tf.train.AdamOptimizer(learning_rate=0.01)
    )

    train_input_fn = estimator.inputs.numpy_input_fn(
        x={"x": scaled_x_train},
        y=y_train,
        shuffle=True,
        batch_size=10,
        num_epochs=5
    )

    deep_model.train(input_fn=train_input_fn, steps=5000)

    test_input_fn = estimator.inputs.numpy_input_fn(
        x={"x": scaled_x_test},
        shuffle=False
    )

    preds = list(deep_model.predict(input_fn=test_input_fn))

    preds = [p["class_ids"][0] for p in preds]

    print(classification_report(y_test, preds))
Example #5
0
def build_estimator(model_dir, model_type):
    """build an estimator"""
    if model_type == 'wide':
        m = estimator.LinearClassifier(model_dir=model_dir,
                                       feature_columns=base_columns +
                                       crossed_columns)
    elif model_type == 'deep':
        m = estimator.DNNClassifier(model_dir=model_dir,
                                    feature_columns=deep_columns,
                                    hidden_units=[100, 50])
    else:
        m = estimator.DNNLinearCombinedClassifier(
            model_dir=model_dir,
            linear_feature_columns=crossed_columns,
            dnn_feature_columns=deep_columns,
            dnn_hidden_units=[100, 50])
    return m
Example #6
0
def main(argv):
    with mlflow.start_run():
        args = parser.parse_args(argv[1:])

        # Fetch the data
        (train_x, train_y), (test_x, test_y) = load_data()

        # Feature columns describe how to use the input.
        my_feature_columns = []
        for key in train_x.keys():
            my_feature_columns.append(
                tf.feature_column.numeric_column(key=key))

        # Two hidden layers of 10 nodes each.
        hidden_units = [10, 10]

        # Build 2 hidden layer DNN with 10, 10 units respectively.
        classifier = tf_estimator.DNNClassifier(
            feature_columns=my_feature_columns,
            hidden_units=hidden_units,
            # The model must choose between 3 classes.
            n_classes=3,
        )

        # Train the Model.
        classifier.train(
            input_fn=lambda: train_input_fn(train_x, train_y, args.batch_size),
            steps=args.train_steps,
        )

        # Evaluate the model.
        eval_result = classifier.evaluate(
            input_fn=lambda: eval_input_fn(test_x, test_y, args.batch_size))

        print("\nTest set accuracy: {accuracy:0.3f}\n".format(**eval_result))

        # Generate predictions from the model
        expected = ["Setosa", "Versicolor", "Virginica"]
        predict_x = {
            "SepalLength": [5.1, 5.9, 6.9],
            "SepalWidth": [3.3, 3.0, 3.1],
            "PetalLength": [1.7, 4.2, 5.4],
            "PetalWidth": [0.5, 1.5, 2.1],
        }

        predictions = classifier.predict(input_fn=lambda: eval_input_fn(
            predict_x, labels=None, batch_size=args.batch_size))

        old_predictions = []
        template = '\nPrediction is "{}" ({:.1f}%), expected "{}"'

        for pred_dict, expec in zip(predictions, expected):
            class_id = pred_dict["class_ids"][0]
            probability = pred_dict["probabilities"][class_id]

            print(template.format(SPECIES[class_id], 100 * probability, expec))

            old_predictions.append(SPECIES[class_id])

        # Creating output tf.Variables to specify the output of the saved model.
        feat_specifications = {
            "SepalLength": tf.Variable([],
                                       dtype=tf.float64,
                                       name="SepalLength"),
            "SepalWidth": tf.Variable([], dtype=tf.float64, name="SepalWidth"),
            "PetalLength": tf.Variable([],
                                       dtype=tf.float64,
                                       name="PetalLength"),
            "PetalWidth": tf.Variable([], dtype=tf.float64, name="PetalWidth"),
        }

        receiver_fn = tf_estimator.export.build_raw_serving_input_receiver_fn(
            feat_specifications)
        temp = tempfile.mkdtemp()
        try:
            # The model is automatically logged when export_saved_model() is called.
            saved_estimator_path = classifier.export_saved_model(
                temp, receiver_fn).decode("utf-8")

            # Since the model was automatically logged as an artifact (more specifically
            # a MLflow Model), we don't need to use saved_estimator_path to load back the model.
            # MLflow takes care of it!
            pyfunc_model = pyfunc.load_model(mlflow.get_artifact_uri("model"))

            predict_data = [[5.1, 3.3, 1.7, 0.5], [5.9, 3.0, 4.2, 1.5],
                            [6.9, 3.1, 5.4, 2.1]]
            df = pd.DataFrame(
                data=predict_data,
                columns=[
                    "SepalLength", "SepalWidth", "PetalLength", "PetalWidth"
                ],
            )

            # Predicting on the loaded Python Function and a DataFrame containing the
            # original data we predicted on.
            predict_df = pyfunc_model.predict(df)

            # Checking the PyFunc's predictions are the same as the original model's predictions.
            template = '\nOriginal prediction is "{}", reloaded prediction is "{}"'
            for expec, pred in zip(old_predictions, predict_df["classes"]):
                class_id = predict_df["class_ids"][predict_df.loc[
                    predict_df["classes"] == pred].index[0]]
                reloaded_label = SPECIES[class_id]
                print(template.format(expec, reloaded_label))
        finally:
            shutil.rmtree(temp)
def saved_tf_iris_model(tmpdir):
    # Following code from
    # https://github.com/tensorflow/models/blob/master/samples/core/get_started/premade_estimator.py
    train_x, train_y = iris_data_utils.load_data()[0]

    # Feature columns describe how to use the input.
    my_feature_columns = []
    for key in train_x.keys():
        my_feature_columns.append(tf.feature_column.numeric_column(key=key))

    # Build 2 hidden layer DNN with 10, 10 units respectively.
    estimator = tf_estimator.DNNClassifier(
        feature_columns=my_feature_columns,
        # Two hidden layers of 10 nodes each.
        hidden_units=[10, 10],
        # The model must choose between 3 classes.
        n_classes=3,
    )

    # Train the Model.
    batch_size = 100
    train_steps = 1000
    estimator.train(
        input_fn=lambda: iris_data_utils.train_input_fn(
            train_x, train_y, batch_size),
        steps=train_steps,
    )

    # Generate predictions from the model
    predict_x = {
        "SepalLength": [5.1, 5.9, 6.9],
        "SepalWidth": [3.3, 3.0, 3.1],
        "PetalLength": [1.7, 4.2, 5.4],
        "PetalWidth": [0.5, 1.5, 2.1],
    }

    estimator_preds = estimator.predict(
        lambda: iris_data_utils.eval_input_fn(predict_x, None, batch_size))

    # Building a dictionary of the predictions by the estimator.
    if sys.version_info < (3, 0):
        estimator_preds_dict = estimator_preds.next()
    else:
        estimator_preds_dict = next(estimator_preds)
    for row in estimator_preds:
        for key in row.keys():
            estimator_preds_dict[key] = np.vstack(
                (estimator_preds_dict[key], row[key]))

    # Building a pandas DataFrame out of the prediction dictionary.
    estimator_preds_df = copy.deepcopy(estimator_preds_dict)
    for col in estimator_preds_df.keys():
        if all(len(element) == 1 for element in estimator_preds_df[col]):
            estimator_preds_df[col] = estimator_preds_df[col].ravel()
        else:
            estimator_preds_df[col] = estimator_preds_df[col].tolist()

    # Building a DataFrame that contains the names of the flowers predicted.
    estimator_preds_df = pandas.DataFrame.from_dict(data=estimator_preds_df)
    estimator_preds_results = [
        iris_data_utils.SPECIES[id[0]]
        for id in estimator_preds_dict["class_ids"]
    ]
    estimator_preds_results_df = pd.DataFrame(
        {"predictions": estimator_preds_results})

    # Define a function for estimator inference
    feature_spec = {}
    for name in my_feature_columns:
        feature_spec[name.key] = tf.Variable([],
                                             dtype=tf.float64,
                                             name=name.key)

    receiver_fn = tf_estimator.export.build_raw_serving_input_receiver_fn(
        feature_spec)

    # Save the estimator and its inference function
    saved_estimator_path = str(tmpdir.mkdir("saved_model"))
    saved_estimator_path = estimator.export_saved_model(
        saved_estimator_path, receiver_fn).decode("utf-8")
    return SavedModelInfo(
        path=saved_estimator_path,
        meta_graph_tags=["serve"],
        signature_def_key="predict",
        inference_df=pd.DataFrame(
            data=predict_x, columns=[name.key for name in my_feature_columns]),
        expected_results_df=estimator_preds_results_df,
        raw_results=estimator_preds_dict,
        raw_df=estimator_preds_df,
    )
def create_tf_estimator_model(directory,
                              export,
                              training_steps=100,
                              use_v1_estimator=False):
    CSV_COLUMN_NAMES = [
        "SepalLength", "SepalWidth", "PetalLength", "PetalWidth", "Species"
    ]

    train = pd.read_csv(
        os.path.join(os.path.dirname(__file__), "iris_training.csv"),
        names=CSV_COLUMN_NAMES,
        header=0,
    )

    train_y = train.pop("Species")

    def input_fn(features, labels, training=True, batch_size=256):
        """An input function for training or evaluating"""
        # Convert the inputs to a Dataset.
        dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))

        # Shuffle and repeat if you are in training mode.
        if training:
            dataset = dataset.shuffle(1000).repeat()

        return dataset.batch(batch_size)

    my_feature_columns = []
    for key in train.keys():
        my_feature_columns.append(tf.feature_column.numeric_column(key=key))

    feature_spec = {}
    for feature in CSV_COLUMN_NAMES:
        feature_spec[feature] = tf.Variable([], dtype=tf.float64, name=feature)

    receiver_fn = tf_estimator.export.build_raw_serving_input_receiver_fn(
        feature_spec)

    run_config = tf_estimator.RunConfig(
        # Emit loss metrics to TensorBoard every step
        save_summary_steps=1, )

    # If flag set to true, then use the v1 classifier that extends Estimator
    # If flag set to false, then use the v2 classifier that extends EstimatorV2
    if use_v1_estimator:
        classifier = tf.compat.v1.estimator.DNNClassifier(
            feature_columns=my_feature_columns,
            # Two hidden layers of 10 nodes each.
            hidden_units=[30, 10],
            # The model must choose between 3 classes.
            n_classes=3,
            model_dir=directory,
            config=run_config,
        )
    else:
        classifier = tf_estimator.DNNClassifier(
            feature_columns=my_feature_columns,
            # Two hidden layers of 10 nodes each.
            hidden_units=[30, 10],
            # The model must choose between 3 classes.
            n_classes=3,
            model_dir=directory,
            config=run_config,
        )

    classifier.train(input_fn=lambda: input_fn(train, train_y, training=True),
                     steps=training_steps)
    if export:
        classifier.export_saved_model(directory, receiver_fn)
Example #9
0
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)


#estimator
import tensorflow as tf
print(tf.VERSION)

feature_columns = [tf.feature_column.numeric_column("x",shape=[13])]


from tensorflow import estimator
deep_model = estimator.DNNClassifier(hidden_units=[13,13,13], feature_columns=feature_columns, n_classes=3
                                     , optimizer=tf.train.GradientDescentOptimizer(learning_rate=.01)) 


input_fn = estimator.inputs.numpy_input_fn(x={"x":X_train}, y=y_train,shuffle=True,batch_size=2,num_epochs=10)
deep_model.train(input_fn=input_fn, steps=500)

input_fn_evaluation=estimator.inputs.numpy_input_fn(x={"x":X_test}, shuffle=False)

y_pred = list(deep_model.predict(input_fn=input_fn_evaluation))
y_pred = [p["class_ids"][0] for p in y_pred]
import numpy as np
y_pred = np.asarray(y_pred)


from sklearn.metrics import confusion_matrix, classification_report
cr = classification_report(y_test, y_pred)
Example #10
0
normalizador = MinMaxScaler()
# normalizamos los datos
x_train_normalizado = normalizador.fit_transform(x_train)
x_test_normalizado = normalizador.transform(x_test)
# imprime los valores normalizados
print('\n' + str(x_train_normalizado) + '\n')
print('\n' + str(x_test_normalizado) + '\n')
# imprime filas y comulmas de entrenamiento y pruebas
print('\n' + str(x_train_normalizado.shape) + '\n')
# print('\n' + str(x_test_normalizado.shape) + '\n')
# calcula las caracteristicas de las columnas
columnas_caracteristicas = [tf.feature_column.numeric_column('x', shape=[13])]
# creamos un modelo, mediante la api de estimator usando el DNNClassifier
modelo = estimator.DNNClassifier(
    hidden_units=[20, 20, 20],
    feature_columns=columnas_caracteristicas,
    n_classes=3,
    optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))
# tf.train.GradientDescentOptimizer(learning_rate=0.01))
# ahora entrenaremos nuestro modelo
# pero primero creamos nuestra funciĆ³n de entrada
funcion_entrada = tf.compat.v1.estimator.inputs.numpy_input_fn(
    x={'x': x_train_normalizado},
    y=y_train,
    shuffle=True,
    batch_size=10,
    num_epochs=10)
# funcion original, pero no funciona con TF v2
# estimator.inputs.numpy_input_fn(x={'x': x_train_normalizado}, y=y_train, shuffle=True, batch_size=10, num_epochs=10)
# ejecuta el entrenamiento 600 veces
modelo.train(input_fn=funcion_entrada, steps=600)
objetivo = vino['target']

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(caracteristicas,
                                                    objetivo,
                                                    test_size=0.3)
from sklearn.preprocessing import MinMaxScaler
normalizador = MinMaxScaler()

x_train_normalizado = normalizador.fit_transform(x_train)
x_test_normalizado = normalizador.transform(x_test)

columnas_caracteristicas = [tf.feature_column.numeric_column('x', shape=[13])]
modelo = estimator.DNNClassifier(
    hidden_units=[20, 20, 20],
    feature_columns=columnas_caracteristicas,
    n_classes=3,
    optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.01))

funcion_entrada = estimator.inputs.numpy_input_fn(x={'x': x_train_normalizado},
                                                  y=y_train,
                                                  shuffle=True,
                                                  batch_size=10,
                                                  num_epochs=10)

modelo.train(input_fn=funcion_entrada, steps=600)
funcion_evaluacion = estimator.inputs.numpy_input_fn(
    x={'x': x_test_normalizado}, shuffle=False)
predicciones = list(modelo.predict(input_fn=funcion_evaluacion))
predicciones_finales = [p['class_ids'][0] for p in predicciones]