Example #1
0
    def get_config(self):
        config = {
            'units':
            self.units,
            'eps':
            self.eps,
            'use_bias':
            self.use_bias,
            'activation':
            activations.serialize(self.activation),
            'kernel_initializer':
            initializers.serialize(self.kernel_initializer),
            'bias_initializer':
            initializers.serialize(self.bias_initializer),
            'kernel_regularizer':
            regularizers.serialize(self.kernel_regularizer),
            'bias_regularizer':
            regularizers.serialize(self.bias_regularizer),
            'activity_regularizer':
            regularizers.serialize(self.activity_regularizer),
            'kernel_constraint':
            constraints.serialize(self.kernel_constraint),
            'bias_constraint':
            constraints.serialize(self.bias_constraint)
        }

        base_config = super().get_config()
        return {**base_config, **config}
Example #2
0
  def get_config(self) -> dict:
    """Returns the config of the layer.

    The same layer can be reinstantiated later
    (without its trained weights) from this configuration.

    Returns:
      Python dictionary containing the configuration of the layer.
    """
    config = {}

    # Include the Entangler-specific arguments
    args = ['output_dim', 'num_legs', 'num_levels', 'use_bias']
    for arg in args:
      config[arg] = getattr(self, arg)

    # Serialize the activation
    config['activation'] = activations.serialize(getattr(self, 'activation'))

    # Serialize the initializers
    layer_initializers = ['kernel_initializer', 'bias_initializer']
    for initializer_arg in layer_initializers:
      config[initializer_arg] = initializers.serialize(
          getattr(self, initializer_arg))

    # Get base config
    base_config = super(DenseEntangler, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))
Example #3
0
 def get_config(self):
     config = {
         'rank': self.rank,
         'filters': self.filters,
         'kernel_size': self.kernel_size,
         'strides': self.strides,
         'padding': self.padding,
         'data_format': self.data_format,
         'dilation_rate': self.dilation_rate,
         'activation': activations.serialize(self.activation),
         'use_bias': self.use_bias,
         'normalize_weight': self.normalize_weight,
         'kernel_initializer': sanitizedInitSer(self.kernel_initializer),
         'bias_initializer': sanitizedInitSer(self.bias_initializer),
         'gamma_diag_initializer': sanitizedInitSer(self.gamma_diag_initializer),
         'gamma_off_initializer': sanitizedInitSer(self.gamma_off_initializer),
         'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
         'bias_regularizer': regularizers.serialize(self.bias_regularizer),
         'gamma_diag_regularizer': regularizers.serialize(self.gamma_diag_regularizer),
         'gamma_off_regularizer': regularizers.serialize(self.gamma_off_regularizer),
         'activity_regularizer': regularizers.serialize(self.activity_regularizer),
         'kernel_constraint': constraints.serialize(self.kernel_constraint),
         'bias_constraint': constraints.serialize(self.bias_constraint),
         'gamma_diag_constraint': constraints.serialize(self.gamma_diag_constraint),
         'gamma_off_constraint': constraints.serialize(self.gamma_off_constraint),
         'init_criterion': self.init_criterion,
         'spectral_parametrization': self.spectral_parametrization,
     }
     base_config = super(ComplexConv, self).get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #4
0
 def get_config(self):
     config = {
         "units":
         self.units,
         "activation":
         activations.serialize(self.activation),
         "use_bias":
         self.use_bias,
         "kernel_quantizer":
         constraints.serialize(self.kernel_quantizer_internal),
         "bias_quantizer":
         constraints.serialize(self.bias_quantizer_internal),
         "kernel_initializer":
         initializers.serialize(self.kernel_initializer),
         "bias_initializer":
         initializers.serialize(self.bias_initializer),
         "kernel_regularizer":
         regularizers.serialize(self.kernel_regularizer),
         "bias_regularizer":
         regularizers.serialize(self.bias_regularizer),
         "activity_regularizer":
         regularizers.serialize(self.activity_regularizer),
         "kernel_constraint":
         constraints.serialize(self.kernel_constraint),
         "bias_constraint":
         constraints.serialize(self.bias_constraint),
         "kernel_range":
         self.kernel_range,
         "bias_range":
         self.bias_range
     }
     base_config = super(QDense, self).get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #5
0
    def get_config(self):
        config = {
            'units': self.output_dim,
            'activation': activations.serialize(self.activation),
        }

        base_config = super(GCNLayer, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
 def get_config(self):
     config = {
         'filters':
         self.filters,
         'kernel_size':
         self.kernel_size,
         'strides':
         self.strides,
         'padding':
         self.padding,
         'data_format':
         self.data_format,
         'dilation_rate':
         self.dilation_rate,
         'activation':
         activations.serialize(self.activation),
         'recurrent_activation':
         activations.serialize(self.recurrent_activation),
         'use_bias':
         self.use_bias,
         'kernel_initializer':
         initializers.serialize(self.kernel_initializer),
         'recurrent_initializer':
         initializers.serialize(self.recurrent_initializer),
         'bias_initializer':
         initializers.serialize(self.bias_initializer),
         'kernel_regularizer':
         regularizers.serialize(self.kernel_regularizer),
         'recurrent_regularizer':
         regularizers.serialize(self.recurrent_regularizer),
         'bias_regularizer':
         regularizers.serialize(self.bias_regularizer),
         'kernel_constraint':
         constraints.serialize(self.kernel_constraint),
         'recurrent_constraint':
         constraints.serialize(self.recurrent_constraint),
         'bias_constraint':
         constraints.serialize(self.bias_constraint),
         'dropout':
         self.dropout,
         'recurrent_dropout':
         self.recurrent_dropout
     }
     base_config = super(ConvGRU2DCell, self).get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #7
0
 def config(self):
     return {
         'channels': self.channels,
         'iterations': self.iterations,
         'order': self.order,
         'share_weights': self.share_weights,
         'gcn_activation': activations.serialize(self.gcn_activation),
         'dropout_rate': self.dropout_rate,
     }
Example #8
0
 def config(self):
     return {
         'channels': self.channels,
         'alpha': self.alpha,
         'propagations': self.propagations,
         'mlp_hidden': self.mlp_hidden,
         'mlp_activation': activations.serialize(self.mlp_activation),
         'dropout_rate': self.dropout_rate,
     }
Example #9
0
 def config(self):
     return {
         "channels": self.channels,
         "alpha": self.alpha,
         "propagations": self.propagations,
         "mlp_hidden": self.mlp_hidden,
         "mlp_activation": activations.serialize(self.mlp_activation),
         "dropout_rate": self.dropout_rate,
     }
Example #10
0
 def config(self):
     return {
         "channels": self.channels,
         "iterations": self.iterations,
         "order": self.order,
         "share_weights": self.share_weights,
         "gcn_activation": activations.serialize(self.gcn_activation),
         "dropout_rate": self.dropout_rate,
     }
Example #11
0
    def get_config(self):
        config = {'alpha': self.alpha,
                  'niter': self.niter,
                  'keep_prob': self.keep_prob,
                  'activation': activations.serialize(self.activation)
        }

        base_config = super(GraphConvolution, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
Example #12
0
 def get_config(self):
     config = super().get_config()
     return dict(config,
                 activation=activations.serialize(self.activation),
                 add_biases=self.add_biases,
                 projection_regularizer=regularizers.serialize(
                     self.projection_regularizer),
                 projection_dropout=self.projection_dropout,
                 scaled_attention=self.scaled_attention)
Example #13
0
 def get_config(self):
     config = {
         'alpha': self.alpha,
         'propagations': self.propagations,
         'mlp_hidden': self.mlp_hidden,
         'mlp_activation': activations.serialize(self.mlp_activation),
         'dropout_rate': self.dropout_rate,
     }
     base_config = super().get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #14
0
 def get_config(self):
     config = {
         'intermediate_size': self.intermediate_size,
         'activation': activations.serialize(self.activation),
         'use_bias': self.use_bias,
         'kernel_initializer':
             initializers.serialize(self.kernel_initializer),
     }
     base_config = super(FeedForward, self).get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #15
0
 def get_config(self):
     config = {
         'units':
         self.units,
         'n_experts':
         self.n_experts,
         'expert_activation':
         activations.serialize(self.expert_activation),
         'gating_activation':
         activations.serialize(self.gating_activation),
         'use_expert_bias':
         self.use_expert_bias,
         'use_gating_bias':
         self.use_gating_bias,
         'expert_kernel_initializer_scale':
         self.expert_kernel_initializer_scale,
         'gating_kernel_initializer_scale':
         self.gating_kernel_initializer_scale,
         'expert_bias_initializer':
         initializers.serialize(self.expert_bias_initializer),
         'gating_bias_initializer':
         initializers.serialize(self.gating_bias_initializer),
         'expert_kernel_regularizer':
         regularizers.serialize(self.expert_kernel_regularizer),
         'gating_kernel_regularizer':
         regularizers.serialize(self.gating_kernel_regularizer),
         'expert_bias_regularizer':
         regularizers.serialize(self.expert_bias_regularizer),
         'gating_bias_regularizer':
         regularizers.serialize(self.gating_bias_regularizer),
         'expert_kernel_constraint':
         constraints.serialize(self.expert_kernel_constraint),
         'gating_kernel_constraint':
         constraints.serialize(self.gating_kernel_constraint),
         'expert_bias_constraint':
         constraints.serialize(self.expert_bias_constraint),
         'gating_bias_constraint':
         constraints.serialize(self.gating_bias_constraint),
         'activity_regularizer':
         regularizers.serialize(self.activity_regularizer)
     }
     base_config = super(DenseMoE, self).get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #16
0
 def get_config(self):
     config = {
         'iterations': self.iterations,
         'order': self.order,
         'share_weights': self.share_weights,
         'gcn_activation': activations.serialize(self.gcn_activation),
         'dropout_rate': self.dropout_rate,
     }
     base_config = super().get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #17
0
 def get_config(self):
     config = super(ConvLinkage, self).get_config()
     config.update(
         dict(
             nlayers=self.nlayers,
             filters=self.filters,
             strides=self.strides,
             kernel_size=self.kernel_size,
             use_bias_first=self.use_bias_first,
             use_bias=self.use_bias,
             use_bias_last=self.use_bias_last,
             activation_first=self.activation_first,
             activation=activations.serialize(self.activation),
             activation_last=activations.serialize(self.activation_last),
             bias_regularizer=self.bias_regularizer,
             dropout_rate=self.dropout_rate,
             use_bn=self.use_bn,
         ))
     return config
Example #18
0
 def get_config(self):
     """
      Part of keras layer interface, where the signature is converted into a dict
     Returns:
         configurational dictionary
     """
     config = {
         "T":
         self.T,
         "n_hidden":
         self.n_hidden,
         "activation":
         activations.serialize(self.activation),
         "activation_lstm":
         activations.serialize(self.activation_lstm),
         "recurrent_activation":
         activations.serialize(self.recurrent_activation),
         "kernel_initializer":
         initializers.serialize(self.kernel_initializer),
         "recurrent_initializer":
         initializers.serialize(self.recurrent_initializer),
         "bias_initializer":
         initializers.serialize(self.bias_initializer),
         "use_bias":
         self.use_bias,
         "unit_forget_bias":
         self.unit_forget_bias,
         "kernel_regularizer":
         regularizers.serialize(self.kernel_regularizer),
         "recurrent_regularizer":
         regularizers.serialize(self.recurrent_regularizer),
         "bias_regularizer":
         regularizers.serialize(self.bias_regularizer),
         "kernel_constraint":
         constraints.serialize(self.kernel_constraint),
         "recurrent_constraint":
         constraints.serialize(self.recurrent_constraint),
         "bias_constraint":
         constraints.serialize(self.bias_constraint),
     }
     base_config = super().get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #19
0
 def get_config(self):
     config = {
         'units':
         self.units,
         'activation':
         activations.serialize(self.activation),
         'recurrent_activation':
         activations.serialize(self.recurrent_activation),
         'use_bias':
         self.use_bias,
         'kernel_initializer':
         initializers.serialize(self.kernel_initializer),
         'recurrent_initializer':
         initializers.serialize(self.recurrent_initializer),
         'bias_initializer':
         initializers.serialize(self.bias_initializer),
         'unit_forget_bias':
         self.unit_forget_bias,
         'kernel_regularizer':
         regularizers.serialize(self.kernel_regularizer),
         'recurrent_regularizer':
         regularizers.serialize(self.recurrent_regularizer),
         'bias_regularizer':
         regularizers.serialize(self.bias_regularizer),
         'activity_regularizer':
         regularizers.serialize(self.activity_regularizer),
         'kernel_constraint':
         constraints.serialize(self.kernel_constraint),
         'recurrent_constraint':
         constraints.serialize(self.recurrent_constraint),
         'bias_constraint':
         constraints.serialize(self.bias_constraint),
         'dropout':
         self.dropout,
         'recurrent_dropout':
         self.recurrent_dropout,
         'implementation':
         self.implementation
     }
     base_config = super(T1Time2VecLSTM, self).get_config()
     del base_config['cell']
     return dict(list(base_config.items()) + list(config.items()))
Example #20
0
 def get_config(self):
     config = {
         'initializer':
         initializers.serialize(self.initializer),
         'activation':
         activations.serialize(self.activation),
         'activity_regularizer':
         regularizers.serialize(self.activity_regularizer)
     }
     base_config = super(RawWeights, self).get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #21
0
def serialize_kwarg(key, attr):
    if key.endswith("_initializer"):
        return initializers.serialize(attr)
    if key.endswith("_regularizer"):
        return regularizers.serialize(attr)
    if key.endswith("_constraint"):
        return constraints.serialize(attr)
    if key == "activation":
        return activations.serialize(attr)
    if key == "use_bias":
        return attr
Example #22
0
def serialize_kwarg(key, attr):
    if key.endswith('_initializer'):
        return initializers.serialize(attr)
    if key.endswith('_regularizer'):
        return regularizers.serialize(attr)
    if key.endswith('_constraint'):
        return constraints.serialize(attr)
    if key == 'activation':
        return activations.serialize(attr)
    if key == 'use_bias':
        return attr
Example #23
0
 def get_config(self):
     config = {
         'units': self.units,
         'activation': [
             activations.serialize(act) for act in self.activation
         ],
         'use_bias': self.use_bias,
         'kernel_initializer':
             initializers.serialize(self.kernel_initializer),
     }
     base_config = super(FeedForward, self).get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #24
0
    def get_config(self):
        config = super().get_config()
        config.update({
            'max_len': None if self.max_len is None else self.max_len + 2,
            'filters': self.filters,
            'kernels': self.kernels,
            'char_dim': self.char_dim,
            'activation': activations.serialize(self.activation),
            'highways': self.highways
        })

        return config
Example #25
0
 def get_config(self):
     config = super(LocalLasso, self).get_config()
     config.update(
         dict(
             implementation=self.implementation,
             kernel_regularizer=self.kernel_regularizer,
             activity_regularizer=self.activity_regularizer,
             nonneg=self.nonneg,
             activation=activations.serialize(self.activation),
             use_bias=self.use_bias,
         ))
     return config
Example #26
0
 def get_config(self):
     config = {
         'center': self.center,
         'scale': self.scale,
         'epsilon': self.epsilon,
         'conditional': self.conditional,
         'hidden_units': self.hidden_units,
         'hidden_activation': activations.serialize(self.hidden_activation),
         'hidden_initializer': initializers.serialize(self.hidden_initializer),
     }
     base_config = super(LayerNormalization, self).get_config()
     return dict(list(base_config.items()) + list(config.items()))
Example #27
0
    def get_config(self):
        config = {
            'units': self.units,
            'learning_rate': self.learning_rate,
            'online': self.online,
            'n_passes': self.n_passes,
            'return_hidden': self.return_hidden,
            'visible_activation': activations.serialize(self.visible_activation),
            'hidden_activation': activations.serialize(self.hidden_activation),
            'use_bias': self.use_bias,
            'kernel_initializer': initializers.serialize(self.kernel_initializer),
            'bias_initializer': initializers.serialize(self.bias_initializer),
            'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
            'bias_regularizer': regularizers.serialize(self.bias_regularizer),
            'activity_regularizer': regularizers.serialize(self.activity_regularizer),
            'kernel_constraint': constraints.serialize(self.kernel_constraint),
            'bias_constraint': constraints.serialize(self.bias_constraint),
            'optimizer':  optimizers.serialize(self.optimizer)
        }

        base_config = super(OnlineBolzmannCell, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
Example #28
0
    def get_config(self):
        """
        Gets class configuration for Keras serialization.
        Used by keras model serialization.

        Returns:
            A dictionary that contains the config of the layer
        """

        config = {
            "units":
            self.units,
            "use_bias":
            self.use_bias,
            "final_layer":
            self.final_layer,
            "activation":
            activations.serialize(self.activation),
            "kernel_initializer":
            initializers.serialize(self.kernel_initializer),
            "basis_initializer":
            initializers.serialize(self.basis_initializer),
            "coefficient_initializer":
            initializers.serialize(self.coefficient_initializer),
            "bias_initializer":
            initializers.serialize(self.bias_initializer),
            "kernel_regularizer":
            regularizers.serialize(self.kernel_regularizer),
            "basis_regularizer":
            regularizers.serialize(self.basis_regularizer),
            "coefficient_regularizer":
            regularizers.serialize(self.coefficient_regularizer),
            "bias_regularizer":
            regularizers.serialize(self.bias_regularizer),
            "kernel_constraint":
            constraints.serialize(self.kernel_constraint),
            "basis_constraint":
            constraints.serialize(self.basis_constraint),
            "coefficient_constraint":
            constraints.serialize(self.coefficient_constraint),
            "bias_constraint":
            constraints.serialize(self.bias_constraint),
            "num_relationships":
            self.num_relationships,
            "num_bases":
            self.num_bases,
        }

        base_config = super().get_config()
        return {**base_config, **config}
Example #29
0
    def get_config(self):
        config = {
            'num_capsule': self.num_capsule,
            'dim_capsule': self.dim_capsule,
            'routings': self.routings,
            'share_weights': self.share_weights,
            'activation': activations.serialize(self.activation),
            'regularizer': regularizers.serialize(self.regularizer),
            'initializer': initializers.serialize(self.initializer),
            'constraint': constraints.serialize(self.constraint)
        }

        base_config = super(Capsule, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
Example #30
0
 def get_config(self):
     config = {
         'channels': self.channels,
         'activation': activations.serialize(self.activation),
         'use_bias': self.use_bias,
         'kernel_initializer': initializers.serialize(self.kernel_initializer),
         'bias_initializer': initializers.serialize(self.bias_initializer),
         'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
         'bias_regularizer': regularizers.serialize(self.bias_regularizer),
         'kernel_constraint': constraints.serialize(self.kernel_constraint),
         'bias_constraint': constraints.serialize(self.bias_constraint)
     }
     base_config = super().get_config()
     return dict(list(base_config.items()) + list(config.items()))