Example #1
0
def main():

	strategy = tf.distribute.MirroredStrategy()
	with strategy.scope():
		train_generator, validation_generator, test_generator = generators()
		class_weight_dict = generate_class_weights(train_generator)
		X_train, X_validation, X_test, Y_train, Y_validation, Y_test = yield_from_generators(train_generator, validation_generator, test_generator)
		
		# Set ResNet to be base model
		base_model = ResNet152V2(weights="imagenet", include_top=False)
		classifier = create_classifier(base_model)
		
		# Freeze all base model layers
		for layer in base_model.layers:
			layer.trainable = False

		classifier.compile(optimizer=Adam(), loss=[categorical_focal_loss(alpha=[[.25, .25, .25]], gamma=2)], metrics=['accuracy'])
		classifier.summary()
		
		print("Transfer learning")
		fit_predict(X_train, X_validation, X_test, Y_train, Y_validation, Y_test, train_generator, validation_generator, test_generator, classifier, class_weight_dict, 0)
		
		# Unfreeze all base model layers
		for layer in base_model.layers:
			layer.trainable = True
		
		classifier.compile(optimizer=Adam(), loss=[categorical_focal_loss(alpha=[[.25, .25, .25]], gamma=2)], metrics=['accuracy'])
		classifier.summary()
		
		print("Fine Tuning")
		fit_predict(X_train, X_validation, X_test, Y_train, Y_validation, Y_test, train_generator, validation_generator, test_generator, classifier, class_weight_dict, 1)
Example #2
0
def define_model() -> Tuple[Model, Model]:
    """Defines the architecture of the model."""
    i = Input([None, None, 3], dtype=tf.uint8)
    x = tf.cast(i, tf.float32)
    x = preprocess_input(x)

    # base_model = MobileNetV2(include_top=False, weights='imagenet', input_shape=(192, 192, 3))
    # base_model = ResNet50(include_top=False, weights='imagenet', input_shape=(192, 192, 3))
    base_model = ResNet152V2(include_top=False,
                             weights='imagenet',
                             input_shape=(192, 192, 3))
    x = base_model(x)

    x = GlobalAveragePooling2D()(x)
    x = Dense(512, kernel_regularizer='l2')(x)
    x = BatchNormalization()(x)
    x = ReLU()(x)
    # x = LayerNormalization()(x)
    # x = Dense(256, kernel_regularizer='l2')(x)
    # x = BatchNormalization()(x)
    # x = ReLU()(x)
    # x = LayerNormalization()(x)
    x = Dense(64, kernel_regularizer='l2')(x)
    x = BatchNormalization()(x)
    x = ReLU()(x)
    # x = LayerNormalization()(x)
    predictions = Dense(1, activation='sigmoid', kernel_regularizer='l2')(x)

    model = Model(inputs=[i], outputs=predictions)

    return model, base_model
Example #3
0
def get_model_resnet(img_shape, img_input, weights, resnet_depth):
    if resnet_depth == 50:
        return ResNet50(include_top=False, weights=weights, input_tensor=img_input, input_shape=img_shape,
                           pooling=None)
    elif resnet_depth == 101:
        return ResNet101V2(include_top=False, weights=weights, input_tensor=img_input, input_shape=img_shape,
                              pooling=None)
    else:
        return ResNet152V2(include_top=False, weights=weights, input_tensor=img_input, input_shape=img_shape,
                              pooling=None)
 def __init__(self, data_shape=(224, 224, 3), resnet_version=1, resnet_layer_number=50, num_classes=1000):
   super(ResNet, self).__init__()
   
   weights = None
   if num_classes == 1000 and data_shape == (224, 224, 3):
     weights = 'imagenet'
     
   self.resnet_version = resnet_version
   
   self.data_augmentation = keras.Sequential(
     [
       layers.experimental.preprocessing.RandomFlip(
         "horizontal", 
         input_shape=data_shape),
       layers.experimental.preprocessing.RandomRotation(0.1),
       layers.experimental.preprocessing.RandomZoom(0.1),
     ]
   )
   
   self.rescaling = layers.experimental.preprocessing.Rescaling(1./255)
   
   def preprocess_input(x, data_format=None):
     from tensorflow.keras.applications import imagenet_utils
     return imagenet_utils.preprocess_input(
     x, data_format=data_format, mode='tf')
     #return x
     
   self.preprocess_input = preprocess_input
   
   if resnet_layer_number == 18:
     if resnet_version == 1:
       self.resnet = ResNet18(category_num=num_classes)
     else:
       self.resnet = ResNet18V2(category_num=num_classes)
   elif resnet_layer_number == 50:
     if resnet_version == 1:
       self.resnet = ResNet50(weights=weights, input_shape=data_shape, classes=num_classes)
     else:
       self.resnet = ResNet50V2(weights=weights, input_shape=data_shape, classes=num_classes)
   elif resnet_layer_number == 101:
     if resnet_version == 1:
       self.resnet = ResNet101(weights=weights, input_shape=data_shape, classes=num_classes)
     else:
       self.resnet = ResNet101V2(weights=weights, input_shape=data_shape, classes=num_classes)
   elif resnet_layer_number == 152:
     if resnet_version == 1:
       self.resnet = ResNet152(weights=weights, input_shape=data_shape, classes=num_classes)
     else:
       self.resnet = ResNet152V2(weights=weights, input_shape=data_shape, classes=num_classes)
     
   self.build((None,) + data_shape)
Example #5
0
def get_model_resnet(num_class):
    base_model = ResNet152V2(weights='imagenet', include_top=False)
    x = base_model.output

    # custom top
    predictions = get_custom_top(x, num_class)

    model = Model(inputs=base_model.input, outputs=predictions)
    for layer in base_model.layers:
        layer.trainable = False
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    return model
Example #6
0
    def build(self, **kwargs) -> Model:
        # input shape 224x224x3
        input_shape = (self.imagenet_img_width, self.imagenet_img_height, self.imagenet_rgb_no_channels)

        # use a ResNet152 pre trained model as a base model, we are not including the top layer for maximizing the
        # learned features
        backbone_model: Model = ResNet152V2(include_top=False, weights='imagenet')
        # Freeze pre-trained base model weights
        backbone_model.trainable = False

        # Opticalflow model definition
        inputs = Input(shape=input_shape, name='opticalflow_inputs')
        x = backbone_model(inputs)
        x = GlobalAveragePooling2D(name='opticalflow_global_avg_pooling')(x)
        outputs = Dense(self.no_classes, activation='softmax', name='opticalflow_classifier')(x)

        # Opticalflow model assembling
        model = Model(inputs=inputs, outputs=outputs, name='opticalflow_model')

        return model
Example #7
0
def build_model(hp):
    ### ResNet
    resnet = ResNet152V2(include_top=False, weights='imagenet', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3))

    output = resnet.layers[-1].output
    output = Flatten()(output)

    resnet = Model(resnet.input, outputs=output)

    used_layers = hp.Int('num_layers',3,6)

    for layer in resnet.layers[:-used_layers]:
        layer.trainable = False
    for layer in resnet.layers[-used_layers:]:
        layer.trainable = True

    model = Sequential()
    model.add(resnet)
    for i in range(hp.Int('num_layers_2',1,4)):
        model.add(Dense(units=hp.Int('units', min_value=32, max_value=512, step = 32), activation='relu'))
        model.add(
            Dropout(rate=hp.Float(
                'dropout',
                min_value=0.0,
                max_value=0.5,
                default=0.25,
                step=0.05,
            ))
        )

    model.add(Dense(28, activation='sigmoid'))

    optimizer = hp.Choice('optimizer', ['adam', 'sgd', 'rmsprop'])

    model.compile(
        loss='categorical_crossentropy',
        optimizer = optimizer,
        metrics=['accuracy'])
    return model
Example #8
0
    def model_Initializer(self):

        from tensorflow.keras.layers import Dense, Flatten
        from tensorflow.keras.models import Model
        import tensorflow as tf

        #Resources
        print("Num GPUs Available: ",
              len(tf.config.experimental.list_physical_devices('GPU')))
        print("Using Tensorflow : ", tf.__version__)

        # initializing the network model and excluding the last layer of network
        if self.MODEL == 'VGG16':
            from tensorflow.keras.applications.vgg16 import VGG16
            self.model = VGG16(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'VGG19':
            from tensorflow.keras.applications.vgg19 import VGG19
            self.model = VGG19(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'Xception':
            from tensorflow.keras.applications.xception import Xception
            self.model = Xception(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'ResNet50V2':
            from tensorflow.keras.applications.resnet_v2 import ResNet50V2
            self.model = ResNet50V2(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'ResNet101V2':
            from tensorflow.keras.applications.resnet_v2 import ResNet101V2
            self.model = ResNet101V2(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'ResNet152V2':
            from tensorflow.keras.applications.resnet_v2 import ResNet152V2
            self.model = ResNet152V2(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'InceptionV3':
            from tensorflow.keras.applications.inception_v3 import InceptionV3
            self.model = InceptionV3(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'InceptionResNetV2':
            from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2
            self.model = InceptionResNetV2(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'MobileNetV2':
            from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2
            self.model = MobileNetV2(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'DenseNet121':
            from tensorflow.keras.applications.densenet import DenseNet121
            self.model = DenseNet121(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'DenseNet169':
            from tensorflow.keras.applications.densenet import DenseNet169
            self.model = DenseNet169(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        if self.MODEL == 'DenseNet201':
            from tensorflow.keras.applications.densenet import DenseNet201
            self.model = DenseNet201(
                input_shape=self.IMAGE_SIZE + [3],
                weights='imagenet',  #using pretrained imagenet weights
                include_top=False)  #excluding the last layer of network

        # Freezing the layes of the network
        for layer in self.model.layers:
            layer.trainable = False

        #flatterning the last layer
        self.x = Flatten()(self.model.output)

        #Created a dense layer for output
        self.outlayers = Dense(self.count_output_classes,
                               activation='softmax')(self.x)

        #Binding pretrained layers with custom output layer
        self.model = Model(inputs=self.model.input, outputs=self.outlayers)

        #Compile the Model
        self.model.compile(loss='categorical_crossentropy',
                           optimizer='adam',
                           metrics=['accuracy'])
Example #9
0
def instantiate_model():
    return (ResNet152V2(weights='imagenet'))
checkpoint = ModelCheckpoint(filepath=filepath,
                             monitor='val_accuracy',
                             verbose=1,
                             save_best_only=True)
stop = EarlyStopping(monitor='accuracy',
                     min_delta=0.01,
                     patience=4,
                     verbose=0,
                     mode='auto',
                     baseline=None,
                     restore_best_weights=False)
callbacks = [checkpoint, stop]

resnet_model = ResNet152V2(weights='imagenet',
                           include_top=False,
                           input_shape=(220, 220, 3),
                           classes=10)

for layer in resnet_model.layers:
    if isinstance(layer, BatchNormalization):
        layer.trainable = True
    else:
        layer.trainable = False
epochs = 50
model = Sequential()
# model.add(UpSampling2D())
# model.add(UpSampling2D())
# model.add(UpSampling2D())
model.add(resnet_model)
model.add(GlobalMaxPooling2D())
model.add(Dense(256, activation='relu'))
Example #11
0
print(dataset.output_shapes)

print('Creating val dataset', val_count)
val_labels = tf.convert_to_tensor(val_labels, dtype=tf.int64)
val_dataset = tf.data.Dataset.from_tensor_slices((val_filenames, val_labels))
val_dataset = val_dataset.map(utils._parse_function224)
val_dataset = val_dataset.batch(64).repeat()

print(val_dataset.output_types)
print(val_dataset.output_shapes)

# this could also be the output a different Keras model or layer
# input_tensor = Input(shape=(240, 240, 3))  # this assumes K.image_data_format() == 'channels_last'

# create the base pre-trained model
base_model = ResNet152V2(weights='imagenet', include_top=False)

# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(103, activation='softmax')(x)

# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)

# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
Example #12
0
 def download_for_url(self, path: str, **kwargs):
     """
     Download the file at the given URL
     :param path:  the path to download
     :param kwargs:  various kwargs for customizing the underlying behavior of
     the model download and setup
     :return: the absolute path to the model
     """
     path_split = path.split('/')
     type = path_split[0]
     weights_file = path_split[1]
     include_top = 'no_top' in weights_file
     if type == 'vgg19':
         ret = VGG19(include_top=include_top, **kwargs)
     elif type == 'vgg16':
         ret = VGG16(include_top=include_top, **kwargs)
     elif type == 'resnet50':
         ret = ResNet50(include_top=include_top, **kwargs)
     elif type == 'resnet101':
         ret = ResNet101(include_top=include_top, **kwargs)
     elif type == 'resnet152':
         ret = ResNet152(include_top=include_top, **kwargs)
     elif type == 'resnet50v2':
         ret = ResNet50V2(include_top=include_top, **kwargs)
     elif type == 'resnet101v2':
         ret = ResNet101V2(include_top=include_top, **kwargs)
     elif type == 'resnet152v2':
         ret = ResNet152V2(include_top=include_top, **kwargs)
     elif type == 'densenet121':
         ret = DenseNet121(include_top=include_top)
     elif type == 'densenet169':
         ret = DenseNet169(include_top=include_top, **kwargs)
     elif type == 'densenet201':
         ret = DenseNet201(include_top=include_top, **kwargs)
     elif type == 'inceptionresnetv2':
         ret = InceptionResNetV2(include_top=include_top, **kwargs)
     elif type == 'efficientnetb0':
         ret = EfficientNetB0(include_top=include_top, **kwargs)
     elif type == 'efficientnetb1':
         ret = EfficientNetB1(include_top=include_top, **kwargs)
     elif type == 'efficientnetb2':
         ret = EfficientNetB2(include_top=include_top, **kwargs)
     elif type == 'efficientnetb3':
         ret = EfficientNetB3(include_top=include_top, **kwargs)
     elif type == 'efficientnetb4':
         ret = EfficientNetB4(include_top=include_top, **kwargs)
     elif type == 'efficientnetb5':
         ret = EfficientNetB5(include_top=include_top, **kwargs)
     elif type == 'efficientnetb6':
         ret = EfficientNetB6(include_top=include_top, **kwargs)
     elif type == 'efficientnetb7':
         efficient_net = EfficientNetB7(include_top=include_top, **kwargs)
     elif type == 'mobilenet':
         ret = MobileNet(include_top=include_top, **kwargs)
     elif type == 'mobilenetv2':
         ret = MobileNetV2(include_top=include_top)
     #  MobileNetV3() missing 2 required positional arguments: 'stack_fn' and 'last_point_ch'
     #elif type == 'mobilenetv3':
     #    mobile_net = MobileNetV3(include_top=include_top, **kwargs)
     elif type == 'inceptionv3':
         ret = InceptionV3(include_top=include_top, **kwargs)
     elif type == 'nasnet':
         ret = NASNetLarge(include_top=include_top, **kwargs)
     elif type == 'nasnet_mobile':
         ret = NASNetMobile(include_top=include_top, **kwargs)
     elif type == 'xception':
         ret = Xception(include_top=include_top, **kwargs)
     model_path = os.path.join(keras_path, weights_file)
     ret.save(model_path)
     return model_path
Example #13
0
def get_resnetv2(classes=54,
                 depth=50,
                 input_shape=(224, 224, 3),
                 base_layer_trainable=False):
    from tensorflow.keras.applications.resnet_v2 import ResNet50V2, ResNet101V2, ResNet152V2
    assert depth in [50, 101, 152]
    if depth == 50:
        base_model = ResNet50V2(include_top=False, input_shape=input_shape)
        for layer in base_model.layers:
            layer.trainable = base_layer_trainable
        head_model = KL.GlobalMaxPool2D()(base_model.output)
        head_model = KL.Dense(1024,
                              activation='relu',
                              name='00',
                              kernel_initializer='he_uniform')(head_model)
        head_model = KL.Dropout(0.5)(head_model)
        # head_model = KL.Dense(1024, activation='relu', name='1111', kernel_initializer='he_uniform')(head_model)
        # head_model = KL.Dropout(0.5)(head_model)
        if classes == 2:
            head_model = KL.Dense(classes, activation='sigmoid',
                                  name='3333')(head_model)
        else:
            head_model = KL.Dense(classes, activation='softmax',
                                  name='3333')(head_model)
        model = KM.Model(inputs=base_model.input, outputs=head_model)
        return model

    elif depth == 101:
        base_model = ResNet101V2(include_top=False, input_shape=input_shape)
        for layer in base_model.layers:
            layer.trainable = base_layer_trainable
        head_model = KL.GlobalMaxPool2D()(base_model.output)
        head_model = KL.Dense(1024,
                              activation='relu',
                              name='00',
                              kernel_initializer='he_uniform')(head_model)
        head_model = KL.Dropout(0.5)(head_model)
        # head_model = KL.Dense(1024, activation='relu', name='1111', kernel_initializer='he_uniform')(head_model)
        # head_model = KL.Dropout(0.5)(head_model)
        if classes == 2:
            head_model = KL.Dense(classes, activation='sigmoid',
                                  name='3333')(head_model)
        else:
            head_model = KL.Dense(classes, activation='softmax',
                                  name='3333')(head_model)
        model = KM.Model(inputs=base_model.input, outputs=head_model)
        return model

    else:
        base_model = ResNet152V2(include_top=False, input_shape=input_shape)
        for layer in base_model.layers:
            layer.trainable = base_layer_trainable
        head_model = KL.GlobalMaxPool2D()(base_model.output)
        head_model = KL.Dense(1024,
                              activation='relu',
                              name='00',
                              kernel_initializer='he_uniform')(head_model)
        head_model = KL.Dropout(0.5)(head_model)
        head_model = KL.Dense(1024,
                              activation='relu',
                              name='11',
                              kernel_initializer='he_uniform')(head_model)
        head_model = KL.Dropout(0.5)(head_model)
        if classes == 2:
            head_model = KL.Dense(classes, activation='sigmoid',
                                  name='3333')(head_model)
        else:
            head_model = KL.Dense(classes, activation='softmax',
                                  name='3333')(head_model)
        model = KM.Model(inputs=base_model.input, outputs=head_model)
        return model