for layer in basemodel.layers:
    layer.trainable = False

# compiling the model
opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)
model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"])

# training the nets
H = model.fit(aug.flow(trainX, trainY, batch_size=BS),
              steps_per_epoch=len(trainX) // BS,
              validation_data=(testX, testY),
              validation_steps=len(testX) // BS,
              epochs=EPOCHS)

# predictions on Test set
predictions = model.predict(testX, batch_size=BS)

# finding the index of the largest probability
predictions = np.argmax(predictions, axis=1)

# show a nicely formatted classification report
print(
    classification_report(testY.argmax(axis=1),
                          predictions,
                          target_names=lb.classes_))

# saving the model
model.save(args["model"], save_format="h5")

# Plotting the training loss and accuaracy
N = EPOCHS
Example #2
0
# Compile Model
model.compile(optimizer='Adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
'''
train model
'''

batch_size = 256
num_epochs = 20

# Train Model
history = model.fit(trainX, trainY, batch_size=batch_size,
                    epochs=num_epochs)  #, callbacks=[checkpoint])

predY = model.predict(testX)
y_pred = np.argmax(predY, axis=1)
y_actual = np.argmax(testY, axis=1)
#y_label= [labels[k] for k in y_pred]
cm = confusion_matrix(y_actual, y_pred)
print(cm)
'''
confusion matrix
'''

import itertools


def plot_confusion_matrix(cm,
                          target_names,
                          title='Confusion matrix',
Example #3
0
# for image in filenames:
#     #print('../working/test1'+image)
#     img = cv2.imread('../working/test1/'+image)
#     img = cv2.resize(img,(224,224))
#     img = img/255.0
#     cls = model.predict(img.reshape(1,224,224,3)).argmax()
#     if cls==0:
#         category.append('cat')
#     else:
#         category.append('dog')
#     file.append(image)

img = cv2.imread('../working/test1/101.jpg')
img = cv2.resize(img, (224, 224))
img = img / 255.0
model.predict(img.reshape(1, 224, 224, 3)).argmax()

import matplotlib.pyplot as plt

plt.imshow(img)

import pandas as pd
ser1 = pd.Series(data=file)

df_submit = pd.DataFrame(ser1, columns=['filename'])

df_submit['category'] = category

df_submit.head(5)

Example #4
0
opt = Adam(lr=lr, decay=lr / epochs)
model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"])

# train
print("[INFO] training model...")
H = model.fit(x=X_train,
              y=y_train,
              batch_size=batch_size,
              steps_per_epoch=len(X_train) // batch_size,
              validation_data=(X_test, y_test),
              validation_steps=len(X_test) // batch_size,
              epochs=epochs)

# test
print("[INFO] evaluating model...")
predIdxs = model.predict(X_test, batch_size=batch_size)
predIdxs = np.argmax(predIdxs, axis=1)

print(
    classification_report(y_test.argmax(axis=1),
                          predIdxs,
                          target_names=lb.classes_))

# confusion matrix
cm = confusion_matrix(y_test.argmax(axis=1), predIdxs)
total = sum(sum(cm))
acc = (cm[0, 0] + cm[1, 1]) / total
sensitivity = cm[0, 0] / (cm[0, 0] + cm[0, 1])
specificity = cm[1, 1] / (cm[1, 0] + cm[1, 1])

print(cm)