# cut the window on x tmp = image[begin_border_x:end_border_x] # cut the window on y for t in tmp: t = t[begin_border_y:end_border_y] # cut the pixels alpha col = [] for pixel in t: col.append(np.array([pixel[0], pixel[1], pixel[2]])) window.append(col) # log print(f"Epochs: {i * y_size + j + 1}/{y_size*x_size}; window: [{begin_true_x}, {begin_true_y}] [{end_true_x}, {end_true_y}]; shape: {np.array(window).shape}") # predict the new window new_window = generator.predict(np.array([window,]))[0] # pass throug all pixels of the new_window # and push there in the new image # the loop for k in range(len(new_window)): for l in range(len(new_window[0])): # calculate the coords # on the new image x = k + (begin_border_x*4) y = l + (begin_border_y*4) # get the pixel value p = new_window[k][l]
if e % 10 == 0: generator.save_weights("./" + 'gen_model.h5') discriminator.save_weights("./" + 'dis_model.h5') # setup for matplotlib fig = plt.figure(figsize=(10, 10)) sub_plots = [] x1, y1 = get_one_image() x2, y2 = get_one_image() x3, y3 = get_one_image() x4, y4 = get_one_image() X = np.concatenate((x1, x2, x3, x4)) for i in range(8): sub_plots.append(plt.subplot(2, 4, i + 1)) ani = animation.FuncAnimation(fig, animate, interval=1) plt.show() x, y = get_one_image() # show a upscalle image new = generator.predict(x) plt.imshow(x[0]) plt.show() plt.imshow(new[0]) plt.show() plt.imshow(y[0]) plt.show()