Example #1
0
def knowledge_distillation_loss(y_true, y_pred, nb_classes, alpha=0.2, beta=1):

    # Extract the one-hot encoded values and the softs separately so that we can create two objective functions
    y_true, y_true_softs = y_true[:, :nb_classes], y_true[:, nb_classes:]
    y_pred, y_pred_softs = y_pred[:, :nb_classes], y_pred[:, nb_classes:]

    loss = alpha * logloss(y_true, y_pred) + beta * logloss(
        y_true_softs, y_pred_softs)

    return loss
Example #2
0
    def loss(y_true, y_pred):
        y_soft = K.softmax(old_logits / temp)

        logits_pred = new_logits[:, :old_classes]
        y_pred_soft = K.softmax(logits_pred / temp)

        return sparselogloss(y_true, y_pred) + L * logloss(y_soft, y_pred_soft)
Example #3
0
def KD_loss(y_true,y_pred,lambd=0.5,T=10.0):
    y_true,y_true_KD = y_true[:,:10],y_true[:,10:]
    y_pred,y_pred_KD = y_pred[:,:10],y_pred[:,10:]
    # Classic cross-entropy (without temperature) hard target
    CE_loss = logloss(y_true,y_pred)
    # KL-Divergence loss for softened output (with temperature) soft target Loss_Teacher
    KL_loss = T**2*KLD_Loss(y_true_KD,y_pred_KD)

    return (1-lambd)*CE_loss + lambd*KL_loss
Example #4
0
 def soft_logloss(self, y_true, y_pred):
   y_true_soft = y_true[:, self.num_class:]
   y_pred_soft = y_pred[:, self.num_class:]
   return logloss(y_true_soft, y_pred_soft)
Example #5
0
 def categorical_crossentropy(self, y_true, y_pred):
   y_true = y_true[:, :self.num_class]
   y_pred = y_pred[:, :self.num_class]
   return logloss(y_true, y_pred)
Example #6
0
  def distill_loss(self, y_true, y_pred):
    y_true, y_true_soft = y_true[:, :self.num_class], y_true[:, self.num_class:]

    # why 2d instead of 1d? because of batch?
    y_pred, y_pred_soft = y_pred[:, :self.num_class], y_pred[:, self.num_class:]
    return self.lambda_const*logloss(y_true, y_pred) + logloss(y_true_soft, y_pred_soft)
Example #7
0
def knowledge_distillation_loss(input_distillation):
    y_pred, y_true, y_soft, y_pred_soft = input_distillation
    return (1 - args.lambda_const) * logloss(y_true, y_pred) + \
           args.lambda_const * args.temperature * args.temperature * logloss(y_soft, y_pred_soft)