Example #1
0
def test_cce_one_hot():
    y_a = K.variable(np.random.randint(0, 7, (5, 6)))
    y_b = K.variable(np.random.random((5, 6, 7)))
    objective_output = sparse_categorical_crossentropy(y_a, y_b)
    assert K.eval(objective_output).shape == (5, 6)

    y_a = K.variable(np.random.randint(0, 7, (6,)))
    y_b = K.variable(np.random.random((6, 7)))
    assert K.eval(sparse_categorical_crossentropy(y_a, y_b)).shape == (6,)
Example #2
0
    def transformer_loss(target_waveform, pred_waveform, target_genres,
                         pred_genres):
        waveform_loss = sparse_categorical_crossentropy(target_waveform,
                                                        pred_waveform,
                                                        from_logits=True)
        genre_loss = sparse_categorical_crossentropy(target_genres,
                                                     pred_genres,
                                                     from_logits=True)

        return tf.reduce_sum(waveform_loss,
                             axis=-1) - 0.01 * 44100 * genre_loss
Example #3
0
    def call(self, inputs):
        # update key extractor weights
        k_weights = [self.m*w_k + (1-self.m)*w_q for w_k, w_q \
                     in zip(self.k_enc.get_weights(), self.q_enc.get_weights())]
        self.k_enc.set_weights(k_weights)
        # get two versions of same batch data
        x_q, x_k = self.rand_aug(inputs)
        
        # save the key and query
        # sample_q = tf.io.encode_jpeg(tf.cast(x_q[0]*255, tf.uint8))
        # ts = ''.join(map(str, list(time.localtime())))
        # tf.io.write_file(f'{ts}_sample_q.jpeg', sample_q)
        # sample_k = tf.io.encode_jpeg(tf.cast(x_k[0]*255, tf.uint8))
        # tf.io.write_file(f'{ts}_sample_k.jpeg', sample_k)

        # forward
        q = self.g(self.q_enc(x_q))
        q = tf.reshape(q, (tf.shape(q)[0], 1, -1))
        k = self.g(self.k_enc(x_k))
        k = tf.reshape(k, (tf.shape(k)[0], -1, 1))
        l_pos = tf.squeeze(tf.matmul(q, k), axis=-1)
        l_neg = tf.matmul(tf.squeeze(q), tf.transpose(self.queue))
        # logits = softmax(tf.concat([l_pos, l_neg], axis=1))
        logits = tf.concat([l_pos, l_neg], axis=1)
        self.queue_them(tf.squeeze(k))
        ###### keras-fashion version ######
        # return logits
        ###### gradient-tape version ###### 
        labels = tf.zeros(tf.shape(inputs)[0])
        loss = K.mean(sparse_categorical_crossentropy(labels, logits, from_logits=True))
        l2 = tf.reduce_mean(tf.math.l2_normalize(q))
        # print(K.max(logits, axis=1).numpy())
        hits = tf.equal(tf.argmax(logits, axis=1), tf.cast(labels, 'int64'))
        acc = tf.reduce_mean(tf.cast(hits, 'float64'))
        return loss + 0.1 * l2, acc
    def step(self, x_true, y_true):
        with tf.GradientTape() as tape:
            pred = self.model(x_true)
            loss = sparse_categorical_crossentropy(y_true, pred)

        grads = tape.gradient(loss, self.model.trainable_variables)
        self.opt.apply_gradients(zip(grads, self.model.trainable_variables))
Example #5
0
    def custom_loss(y_true, y_pred):
        loss = sparse_categorical_crossentropy(y_true, y_pred)
        if extra_losses is not None:
            for fn in extra_losses:
                loss += fn(model)

        return loss
Example #6
0
    def yolo_loss(y_true, y_pred):
        # 1. transform all pred outputs
        # y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls))
        pred_box, pred_obj, pred_class, pred_xywh = yolo_boxes(
            y_pred, anchors, classes)
        pred_xy = pred_xywh[..., 0:2]
        pred_wh = pred_xywh[..., 2:4]

        # 2. transform all true outputs
        # y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls))
        true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1),
                                                      axis=-1)
        true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
        true_wh = true_box[..., 2:4] - true_box[..., 0:2]

        # give higher weights to small boxes
        box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

        # 3. inverting the pred box equations
        grid_size = tf.shape(y_true)[1]
        grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
        grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
        true_xy = true_xy * tf.cast(grid_size, tf.float32) - \
            tf.cast(grid, tf.float32)
        true_wh = tf.math.log(true_wh / anchors)
        true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh),
                           true_wh)

        # 4. calculate all masks
        obj_mask = tf.squeeze(true_obj, -1)
        # ignore false positive when iou is over threshold
        best_iou = tf.map_fn(
            lambda x: tf.reduce_max(broadcast_iou(
                x[0], tf.boolean_mask(x[1], tf.cast(x[2], tf.bool))),
                                    axis=-1), (pred_box, true_box, obj_mask),
            tf.float32)
        ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)

        # 5. calculate all losses
        xy_loss = obj_mask * box_loss_scale * \
            tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)
        wh_loss = obj_mask * box_loss_scale * \
            tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)
        obj_loss = binary_crossentropy(true_obj, pred_obj)
        obj_loss = obj_mask * obj_loss + \
            (1 - obj_mask) * ignore_mask * obj_loss
        # TODO: use binary_crossentropy instead
        if FLAGS.num_classes == 1:
            class_loss = obj_mask * binary_crossentropy(
                true_class_idx, pred_class, from_logits=True)
        else:
            class_loss = obj_mask * sparse_categorical_crossentropy(
                true_class_idx, pred_class, from_logits=True)
        # 6. sum over (batch, gridx, gridy, anchors) => (batch, 1)
        xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
        wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
        obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
        class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))

        return xy_loss + wh_loss + obj_loss + class_loss
Example #7
0
        def yolo_loss(y_true, y_pred):
            """ Code from: https://github.com/zzh8829/yolov3-tf2/blob/master/yolov3_tf2/dataset.py """
            # 1. transform all pred outputs
            # y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls))
            pred_box, pred_obj, pred_class, pred_xywh = self.extract_from_predictions(
                y_pred, scale_index)
            pred_xy = pred_xywh[..., 0:2]
            pred_wh = pred_xywh[..., 2:4]

            # 2. transform all true outputs
            # y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls))
            true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1),
                                                          axis=-1)
            true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
            true_wh = true_box[..., 2:4] - true_box[..., 0:2]

            # give higher weights to small boxes
            box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

            # 3. inverting the pred box equations
            grid_size = tf.shape(y_true)[1]
            grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
            grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
            true_xy = true_xy * tf.cast(grid_size, tf.float32) - tf.cast(
                grid, tf.float32)
            true_wh = tf.math.log(true_wh /
                                  self.anchors[self.masks[scale_index]])
            true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh),
                               true_wh)

            # 4. calculate all masks
            obj_mask = tf.squeeze(true_obj, -1)
            # ignore false positive when iou is over threshold
            true_box_flat = tf.boolean_mask(true_box,
                                            tf.cast(obj_mask, tf.bool))
            best_iou = tf.reduce_max(helpers.broadcast_iou(
                pred_box, true_box_flat),
                                     axis=-1)
            ignore_mask = tf.cast(best_iou < self.iou_threshold, tf.float32)

            # 5. calculate all losses
            xy_loss = obj_mask * box_loss_scale * tf.reduce_sum(
                tf.square(true_xy - pred_xy), axis=-1)
            wh_loss = obj_mask * box_loss_scale * tf.reduce_sum(
                tf.square(true_wh - pred_wh), axis=-1)
            obj_loss = binary_crossentropy(true_obj, pred_obj)
            obj_loss = obj_mask * obj_loss + (
                1 - obj_mask) * ignore_mask * obj_loss
            class_loss = obj_mask * sparse_categorical_crossentropy(
                true_class_idx, pred_class)

            # 6. sum over (batch, gridx, gridy, anchors) => (batch, 1)
            xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
            wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
            obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
            class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))

            return xy_loss + wh_loss + obj_loss + class_loss
Example #8
0
    def _build_net(self):
        input = layers.Input(shape=(self.n_features,))
        x = layers.Dense(10, activation="tanh")(input)
        self.all_act = layers.Dense(self.n_actions)(x)

        loss = losses.sparse_categorical_crossentropy()
        rmsprop = optimizers.RMSprop(lr=self.learning_rate)

        self.model = models.Model(input, self.all_act)
        self.model.compile(loss=loss, optimizer=rmsprop, metrics=['accuracy'])
 def compute_loss(y_true, y_pred):
     M = tf.convert_to_tensor(y_true[:, :, :, :, 0])
     W = tf.convert_to_tensor(y_true[:, :, :, :, 1])
     y_pred = tf.convert_to_tensor(y_pred)
     y1 = sparse_categorical_crossentropy(M, y_pred)
     y2 = tf.math.multiply(W, y1)
     y1 = tf.reduce_mean(y1)
     y2 = tf.reduce_mean(y2)
     y = y1 + alpha * y2
     return y
Example #10
0
def compute_loss(y_true, y_pred):
    """
    计算loss
    :param y_true: 模型
    :param y_pred:
    :return:
    """
    mse = losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=True)

    return mse
Example #11
0
    def yolo_loss(y_true, y_pred):
        # y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls))
        pred_box, pred_obj, pred_class, pred_xywh = yoloBoxes(
            y_pred, anchors, classes)
        pred_xy = pred_xywh[..., 0:2]
        pred_wh = pred_xywh[..., 2:4]

        # PASCAL VOC -> COCO
        # xmin, ymin, xmax, ymax -> x, y, w, h
        # y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls))
        true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1),
                                                      axis=-1)
        true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
        true_wh = true_box[..., 2:4] - true_box[..., 0:2]

        # give higher weights to small boxes
        # true_wh[..., 0] * true_wh[..., 1] : box area
        box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

        grid_size = tf.shape(y_true)[1]
        grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
        grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
        true_xy = true_xy * tf.cast(grid_size, tf.float32) - tf.cast(
            grid, tf.float32)
        true_wh = tf.math.log(true_wh / anchors)
        true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh),
                           true_wh)

        obj_mask = tf.squeeze(true_obj, -1)
        best_iou = tf.map_fn(
            lambda x: tf.reduce_max(broadcast_iou(
                x[0], tf.boolean_mask(x[1], tf.cast(x[2], tf.bool))),
                                    axis=-1), (pred_box, true_box, obj_mask),
            tf.float32)
        ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)

        xy_loss = obj_mask * box_loss_scale * tf.reduce_sum(
            tf.square(true_xy - pred_xy), axis=-1)
        wh_loss = obj_mask * box_loss_scale * tf.reduce_sum(
            tf.square(true_wh - pred_wh), axis=-1)
        obj_loss = binary_crossentropy(true_obj, pred_obj)
        obj_loss = obj_mask * obj_loss + (1 -
                                          obj_mask) * ignore_mask * obj_loss
        class_loss = obj_mask * sparse_categorical_crossentropy(
            true_class_idx, pred_class)

        xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
        wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
        obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
        class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))

        return xy_loss + wh_loss + obj_loss + class_loss
def custom_loss(y_true, y_pred):
    # y_true[i] = (row, col, height, width,
    #              p_class1, p_class2, p_class3,
    #              p(object_appeared|img))
    # the bounding box loss:
    bce_1 = binary_crossentropy(y_true[:, :4], y_pred[:, :4])
    # the object class prediction loss:
    scce = sparse_categorical_crossentropy(y_true[:, 4], y_pred[:, 4:-1])
    # the binary prediction (about an object being present in an image) loss:
    bce_2 = binary_crossentropy(y_true[:, -1], y_pred[:, -1])
    return ALPHA * y_true[:,
                          -1] * bce_1 + BETA * y_true[:,
                                                      -1] * scce + GAMMA * bce_2
Example #13
0
 def do_test_forward(self, sequence):
         
     with self.device:
         self.test_metric.reset_states()
         
         for inputs, labels in sequence:
             x, adj, index, _ = inputs
             logit = self.propagation(x, adj, training=False)
             output = tf.gather(logit, index)
             output = softmax(output)
             loss = tf.reduce_mean(sparse_categorical_crossentropy(labels, output))
             self.test_metric.update_state(labels, output)
         
     return loss, self.test_metric.result()
Example #14
0
    def yolo_loss(y_true, y_pred):
        # 1. transform all pred outputs
        # y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls))
        pred_box, pred_obj, pred_class = yolo_boxes(y_pred,
                                                    anchors,
                                                    classes,
                                                    calc_loss=True)

        pred_xy = (pred_box[..., 0:2] + pred_box[..., 2:4]) / 2
        pred_wh = pred_box[..., 2:4] - pred_box[..., 0:2]

        # 2. transform all true outputs
        # y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls))
        true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1),
                                                      axis=-1)
        true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
        true_wh = true_box[..., 2:4] - true_box[..., 0:2]

        # give higher weights to small boxes
        box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

        # 4. calculate all masks
        obj_mask = tf.squeeze(true_obj, -1)
        # ignore false positive when iou is over threshold
        best_iou = tf.map_fn(
            lambda x: tf.reduce_max(broadcast_iou(
                x[0], tf.boolean_mask(x[1], tf.cast(x[2], tf.bool))),
                                    axis=-1), (pred_box, true_box, obj_mask),
            tf.float32)
        ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)

        # 5. calculate all losses
        xy_loss = obj_mask * box_loss_scale * \
            tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)
        wh_loss = obj_mask * box_loss_scale * \
            tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)
        obj_loss = binary_crossentropy(true_obj, pred_obj, from_logits=True)
        obj_loss = obj_mask * obj_loss + \
            (1 - obj_mask) * ignore_mask * obj_loss
        # TODO: use binary_crossentropy instead
        class_loss = obj_mask * sparse_categorical_crossentropy(
            true_class_idx, pred_class, from_logits=True)

        # 6. sum over (batch, gridx, gridy, anchors) => (batch, 1)
        xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
        wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
        obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
        class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))

        return xy_loss + wh_loss + obj_loss + class_loss
Example #15
0
    def call(self, inputs: list[tf.Tensor], *args, **kwargs) -> tf.Tensor:
        # (batch_size, label_seq_len)
        # (batch_size, label_seq_len, vocab_size)
        # (batch_size, label_seq_len)
        token_ids, logits, mask = inputs

        loss = sparse_categorical_crossentropy(token_ids, logits, from_logits=True)
        mask = tf.cast(mask, loss.dtype)
        self.add_loss(tf.reduce_sum(loss * mask) / tf.reduce_sum(mask))
        predicted_token_ids = tf.math.argmax(logits, axis=-1)
        is_equal = tf.cast(tf.equal(token_ids, predicted_token_ids), loss.dtype)
        lm_accuracy = tf.reduce_sum(is_equal * mask) / tf.reduce_sum(mask)
        self.add_metric(lm_accuracy, name="lm_accuracy")
        boolean_mask = tf.cast(mask, tf.bool)
        return tf.ragged.boolean_mask(predicted_token_ids, boolean_mask)
Example #16
0
    def yoloLoss(y_true, y_pred):
        pred_box, pred_obj, pred_class, pred_xywh = yolo_boxes(
            y_pred, anchors, class_num)
        pred_xy = pred_xywh[..., 0:2]  # 取出偏移量
        pred_wh = pred_xywh[..., 2:4]

        true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1),
                                                      axis=-1)
        true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
        true_wh = true_box[..., 2:4] - true_box[..., 0:2]

        box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

        grid_size = tf.shape(y_true)[1]
        grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
        grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
        true_xy = true_xy * tf.cast(grid_size, tf.float32) - \
                  tf.cast(grid, tf.float32)
        true_wh = tf.math.log(true_wh / anchors)
        true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh),
                           true_wh)  # 将真实坐标转变为偏移量用于计算loss

        obj_mask = tf.squeeze(true_obj, -1)
        # ignore false positive when iou is over threshold
        best_iou = tf.map_fn(
            lambda x: tf.reduce_max(broadcast_iou(
                x[0], tf.boolean_mask(x[1], tf.cast(x[2], tf.bool))),
                                    axis=-1), (pred_box, true_box, obj_mask),
            tf.float32)
        ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)

        xy_loss = obj_mask * box_loss_scale * \
                  tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)
        wh_loss = obj_mask * box_loss_scale * \
                  tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)
        obj_loss = binary_crossentropy(true_obj, pred_obj)
        obj_loss = obj_mask * obj_loss + \
                   (1 - obj_mask) * ignore_mask * obj_loss
        # TODO: use binary_crossentropy instead
        class_loss = obj_mask * sparse_categorical_crossentropy(
            true_class_idx, pred_class)

        xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
        wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
        obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
        class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))

        return xy_loss + wh_loss + obj_loss + class_loss
Example #17
0
    def yolo_loss(y_true, y_pred):
        pred_box, pred_obj, pred_class, pred_xywh = yolo_boxes(
            y_pred, anchors, classes)
        pred_xy = pred_xywh[..., 0:2]
        pred_wh = pred_xywh[..., 2:4]

        true_box, true_obj, true_class_idx = tf.split(
            y_true, (4, 1, 1), axis=-1)
        true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
        true_wh = true_box[..., 2:4] - true_box[..., 0:2]

        box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

        grid_size = tf.shape(y_true)[1]
        grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
        grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
        true_xy = true_xy * tf.cast(grid_size, tf.float32) - \
            tf.cast(grid, tf.float32)
        true_wh = tf.math.log(true_wh / anchors)
        true_wh = tf.where(tf.math.is_inf(true_wh),
                      tf.zeros_like(true_wh), true_wh)

        obj_mask = tf.squeeze(true_obj, -1)
        # ignore when Intersection Over Union is over threshold
        true_box_flat = tf.boolean_mask(true_box, tf.cast(obj_mask, tf.bool))
        best_iou = tf.reduce_max(intersectionOverUnion(
            pred_box, true_box_flat), axis=-1)
        ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)

        xy_loss = obj_mask * box_loss_scale * \
            tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)
        wh_loss = obj_mask * box_loss_scale * \
            tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)
        obj_loss = binary_crossentropy(true_obj, pred_obj)
        obj_loss = obj_mask * obj_loss + \
            (1 - obj_mask) * ignore_mask * obj_loss

        class_loss = obj_mask * sparse_categorical_crossentropy(
            true_class_idx, pred_class)

        xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
        wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
        obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
        class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))

        return xy_loss + wh_loss + obj_loss + class_loss
Example #18
0
def mask_sparse_cross_entropy(y_true=None, y_pred=None, mask=0):
    # y_true: [None, steps]
    # y_pred: [None, steps, num_classes+1], +1 for pad to mask

    # loss: [None, steps]
    loss = sparse_categorical_crossentropy(y_true, y_pred)

    # masks: [None, steps]
    masks = tf.cast(tf.not_equal(y_true, mask), tf.float32)

    # masked-loss: [None, steps]
    loss = tf.multiply(loss, masks)

    # reduce_mean: shape=()
    loss = tf.cast(tf.reduce_mean(loss), tf.float32)

    return loss
Example #19
0
    def yolo_loss(y_true, y_pred):
        p_bboxes, p_objectness, p_class, p_original = make_bboxs(y_pred, anchors, classes)
        p_xy, p_wh = tf.split(p_original, (2, 2), axis=-1)

        t_xy = (y_true[..., 0:2] + y_true[..., 2:4]) / 2  # Center of each coord
        t_wh = y_true[..., 2:4] - y_true[..., 0:2]  # Width and height for each

        # Give higher weights to small boxes
        l_tune = 2 - t_wh[..., 0] * t_wh[..., 1]

        # Inverting the pred box equations
        grid_size = tf.shape(y_true)[1]
        grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
        grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
        t_xy = t_xy * tf.cast(grid_size, tf.float32) - tf.cast(grid, tf.float32)
        t_wh = tf.math.log(t_wh / anchors)
        t_wh = tf.where(tf.math.is_inf(t_wh), tf.zeros_like(t_wh), t_wh)

        # Calculate masks
        obj_mask = tf.squeeze(y_true[..., 4:5], -1)
        gather_mask = tf.where(tf.not_equal(obj_mask, 0.))

        buffer = [0] * 7
        for i, el in enumerate([t_wh, p_wh, t_xy, p_xy, y_true[..., 5:6], p_class, l_tune]):
            buffer[i] = tf.gather_nd(el, gather_mask)

        t_wh, p_wh, t_xy, p_xy, t_class, p_class, l_tune = buffer

        # Calculate best IOU between predictions and true objects
        best_iou = bbox_iou(p_bboxes, tf.boolean_mask(y_true[..., :4], tf.cast(obj_mask, tf.bool)))
        obj_loss = losses.binary_crossentropy(y_true[..., 4:5], p_objectness)
        obj_loss = obj_mask * obj_loss + (1 - obj_mask) * obj_loss * tf.cast(best_iou < iou_thresh, tf.float32)

        # Losses
        wh_loss = l_tune * tf.reduce_sum(tf.square(t_wh - p_wh), axis=-1)
        xy_loss = l_tune * tf.reduce_sum(tf.square(t_xy - p_xy), axis=-1)

        class_loss = losses.sparse_categorical_crossentropy(t_class, p_class) * 20

        total_loss = 0
        for loss in [xy_loss, wh_loss, obj_loss, class_loss]:
            total_loss += tf.reduce_sum(loss)
        return total_loss
Example #20
0
 def yolo_loss(y_true, y_pred):
     pred_box, pred_obj, pred_class, pred_xywh = get_boxes(
         y_pred, anchors, classes)
     pred_xy = pred_xywh[..., 0:2]
     pred_wh = pred_xywh[..., 2:4]
     true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1),
                                                   axis=-1)
     true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
     true_wh = true_box[..., 2:4] - true_box[..., 0:2]
     box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]
     grid_size = tf.shape(y_true)[1]
     grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
     grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
     true_xy = true_xy * tf.cast(grid_size, tf.float32) - tf.cast(
         grid, tf.float32)
     true_wh = tf.math.log(true_wh / anchors)
     true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh),
                        true_wh)
     obj_mask = tf.squeeze(true_obj, -1)
     best_iou = tf.map_fn(
         lambda x: tf.reduce_max(
             broadcast_iou(x[0],
                           tf.boolean_mask(x[1], tf.cast(x[2], tf.bool))),
             axis=-1,
         ),
         (pred_box, true_box, obj_mask),
         fn_output_signature=tf.float32,
     )
     ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)
     xy_loss = (obj_mask * box_loss_scale *
                tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1))
     wh_loss = (obj_mask * box_loss_scale *
                tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1))
     obj_loss = binary_crossentropy(true_obj, pred_obj)
     obj_loss = obj_mask * obj_loss + (1 -
                                       obj_mask) * ignore_mask * obj_loss
     class_loss = obj_mask * sparse_categorical_crossentropy(
         true_class_idx, pred_class)
     xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
     wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
     obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
     class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))
     return xy_loss + wh_loss + obj_loss + class_loss
    def custom_loss(y_true, y_pred):
        y_pred = tf.reshape(y_pred, (-1, n_objects, 5 + n_classes))
        pred_obj, pred_xywh, pred_class = tf.split(y_pred, [1, 4, n_classes], axis=-1)

        y_true = tf.reshape(y_true, (-1, n_objects, 6))
        true_obj, true_xywh, true_class = tf.split(y_true, [1, 4, 1], axis=-1)

        # Cross entropy loss for score
        obj_loss = binary_crossentropy(true_obj, pred_obj)
        obj_loss = tf.reduce_sum(obj_loss, axis=1)
        
        # MSE loss for the BB
        bb_loss = mean_squared_error(true_xywh, pred_xywh)
        bb_loss = tf.reduce_sum(bb_loss, axis=1)

        # We have to convert the class into a vector
        class_loss = sparse_categorical_crossentropy(true_class, pred_class)
        class_loss = tf.reduce_sum(class_loss, axis=1)

        return obj_loss + bb_loss + class_loss
Example #22
0
def crf_loss(y_true, y_pred):
    """General CRF loss function depending on the learning mode.

  Args:
    y_true: tensor with true targets.
    y_pred: tensor with predicted targets.

  Returns:
      If the CRF layer is being trained in the join mode, returns the negative
      log-likelihood. Otherwise returns the categorical crossentropy implemented
      by the underlying Keras backend.

  """
    crf, idx = y_pred._keras_history[:2]
    if crf.learn_mode == 'join':
        return crf_nll(y_true, y_pred)
    else:
        if crf.sparse_target:
            return sparse_categorical_crossentropy(y_true, y_pred)
        else:
            return categorical_crossentropy(y_true, y_pred)
Example #23
0
def crf_loss(y_true, y_pred):
    """General CRF loss function depending on the learning mode.
    # Arguments
        y_true: tensor with true targets.
        y_pred: tensor with predicted targets.
    # Returns
        If the CRF layer is being trained in the join mode, returns the negative
        log-likelihood. Otherwise returns the categorical crossentropy implemented
        by the underlying Keras backend.
    # About GitHub
        If you open an issue or a pull request about CRF, please
        add `cc @lzfelix` to notify Luiz Felix.
    """
    crf, idx = y_pred._keras_history[:2]
    if crf.learn_mode == 'join':
        return crf_nll(y_true, y_pred)
    else:
        if crf.sparse_target:
            return sparse_categorical_crossentropy(y_true, y_pred)
        else:
            return categorical_crossentropy(y_true, y_pred)
Example #24
0
    def step(X, y):
        # get the weights

        weights = phase2Kernel.forward()
        conv_bias = model.layers[0].get_weights()[1]
        model.layers[0].set_weights([weights, conv_bias])

        # keep track of our gradients
        with tf.GradientTape() as tape:
            # make a prediction using the model and then calculate the
            # loss
            pred = model(X)
            print("Pred shape:", pred.shape)
            loss = sparse_categorical_crossentropy(y, pred)
            accuracy = accuracy_score(y, np.argmax(pred, axis=1))
            print("loss", tf.math.reduce_mean(loss))
            print("accuracy:", accuracy)
        grads = tape.gradient(loss, model.trainable_variables)
        print("gradients shapes: ", grads[0].shape, grads[1].shape)
        final_grad = phase2Kernel.backward(grads[0])
        phase2Kernel.phi -= PhaseLR * cp.asnumpy(final_grad)

        opt.apply_gradients(zip(grads, model.trainable_variables))
Example #25
0
    def do_train_forward(self, sequence):
        
        with self.device:
            self.train_metric.reset_states()
            
            for inputs, labels in sequence:
                x, adj, index, adv_mask = inputs
                with tf.GradientTape() as tape:
                    logit = self.propagation(x, adj)
                    output = tf.gather(logit, index)
                    output = softmax(output)

                    loss = tf.reduce_mean(sparse_categorical_crossentropy(labels, output))
                    entropy_loss = entropy_y_x(logit)
                    vat_loss = self.virtual_adversarial_loss(x, adj, logit=logit, adv_mask=adv_mask)
                    loss += self.p1 * vat_loss + self.p2 * entropy_loss
            
                    self.train_metric.update_state(labels, output)

                trainable_variables = self.model.trainable_variables
                gradients = tape.gradient(loss, trainable_variables)
                self.optimizer.apply_gradients(zip(gradients, trainable_variables))

        return loss, self.train_metric.result()
Example #26
0
def yolo_loss(detector_mask, matching_gt_boxes, matching_classes_oh,
              gt_boxes_grid, y_pred):
    # detector_mask: [b,16,16,5,1]
    # matching_gt_boxes: [b,16,16,5,5] x-y-w-h-l
    # matching_classes_oh: [b,16,16,5,2] l1-l2
    # gt_boxes_grid: [b,40,5] x-y-wh-l
    # y_pred: [b,16,16,5,7] x-y-w-h-conf-l0-l1

    IMGSZ = cfg.TRAIN.IMGSZ
    GRIDSZ = cfg.TRAIN.GRIDSZ
    ANCHORS = cfg.TRAIN.ANCHORS

    anchors = np.array(ANCHORS).reshape(5, 2)

    # create starting position for each grid anchors
    # [16,16]
    x_grid = tf.tile(tf.range(GRIDSZ), [GRIDSZ])
    # [1,16,16,1,1]
    # [b,16,16,5,2]
    x_grid = tf.reshape(x_grid, (1, GRIDSZ, GRIDSZ, 1, 1))
    x_grid = tf.cast(x_grid, tf.float32)
    # [b,16_1,16_2,1,1]=>[b,16_2,16_1,1,1]
    y_grid = tf.transpose(x_grid, (0, 2, 1, 3, 4))
    xy_grid = tf.concat([x_grid, y_grid], axis=-1)
    # [1,16,16,1,2]=> [b,16,16,5,2]
    xy_grid = tf.tile(xy_grid, [y_pred.shape[0], 1, 1, 5, 1])

    # [b,16,16,5,7] x-y-w-h-conf-l1-l2
    pred_xy = tf.sigmoid(y_pred[..., 0:2])
    pred_xy = pred_xy + xy_grid
    # [b,16,16,5,2]
    pred_wh = tf.exp(y_pred[..., 2:4])
    # [b,16,16,5,2] * [5,2] => [b,16,16,5,2]
    pred_wh = pred_wh * anchors

    n_detector_mask = tf.reduce_sum(tf.cast(detector_mask > 0., tf.float32))
    # [b,16,16,5,1] * [b,16,16,5,2]
    #
    xy_loss = detector_mask * tf.square(matching_gt_boxes[..., :2] -
                                        pred_xy) / (n_detector_mask + 1e-6)
    xy_loss = tf.reduce_sum(xy_loss)
    wh_loss = detector_mask * tf.square(tf.sqrt(matching_gt_boxes[..., 2:4]) - \
                                        tf.sqrt(pred_wh)) / (n_detector_mask + 1e-6)
    wh_loss = tf.reduce_sum(wh_loss)

    # 4.1 coordinate loss
    coord_loss = xy_loss + wh_loss

    # 4.2 class loss
    # [b,16,16,5,2]
    pred_box_class = y_pred[..., 5:]
    # [b,16,16,5]
    true_box_class = tf.argmax(matching_classes_oh, -1)
    # [b,16,16,5] vs [b,16,16,5,2]
    class_loss = losses.sparse_categorical_crossentropy( \
        true_box_class, pred_box_class, from_logits=True)
    # [b,16,16,5] => [b,16,16,5,1]* [b,16,16,5,1]
    class_loss = tf.expand_dims(class_loss, -1) * detector_mask
    class_loss = tf.reduce_sum(class_loss) / (n_detector_mask + 1e-6)

    # 4.3 object loss
    # nonobject_mask
    # iou done!
    # [b,16,16,5]
    x1, y1, w1, h1 = matching_gt_boxes[..., 0], matching_gt_boxes[..., 1], \
                     matching_gt_boxes[..., 2], matching_gt_boxes[..., 3]
    # [b,16,16,5]
    x2, y2, w2, h2 = pred_xy[..., 0], pred_xy[..., 1], pred_wh[...,
                                                               0], pred_wh[...,
                                                                           1]
    ious = compute_iou(x1, y1, w1, h1, x2, y2, w2, h2)
    # [b,16,16,5,1]
    ious = tf.expand_dims(ious, axis=-1)

    # [b,16,16,5,1]
    pred_conf = tf.sigmoid(y_pred[..., 4:5])
    # [b,16,16,5,2] => [b,16,16,5, 1, 2]
    pred_xy = tf.expand_dims(pred_xy, axis=4)
    # [b,16,16,5,2] => [b,16,16,5, 1, 2]
    pred_wh = tf.expand_dims(pred_wh, axis=4)
    pred_wh_half = pred_wh / 2.
    pred_xymin = pred_xy - pred_wh_half
    pred_xymax = pred_xy + pred_wh_half

    # [b, 40, 5] => [b, 1, 1, 1, 40, 5]
    true_boxes_grid = tf.reshape(gt_boxes_grid, [
        gt_boxes_grid.shape[0], 1, 1, 1, gt_boxes_grid.shape[1],
        gt_boxes_grid.shape[2]
    ])
    true_xy = true_boxes_grid[..., 0:2]
    true_wh = true_boxes_grid[..., 2:4]
    true_wh_half = true_wh / 2.
    true_xymin = true_xy - true_wh_half
    true_xymax = true_xy + true_wh_half
    # predxymin, predxymax, true_xymin, true_xymax
    # [b,16,16,5,1,2] vs [b,1,1,1,40,2]=> [b,16,16,5,40,2]
    intersectxymin = tf.maximum(pred_xymin, true_xymin)
    # [b,16,16,5,1,2] vs [b,1,1,1,40,2]=> [b,16,16,5,40,2]
    intersectxymax = tf.minimum(pred_xymax, true_xymax)
    # [b,16,16,5,40,2]
    intersect_wh = tf.maximum(intersectxymax - intersectxymin, 0.)
    # [b,16,16,5,40] * [b,16,16,5,40]=>[b,16,16,5,40]
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    # [b,16,16,5,1]
    pred_area = pred_wh[..., 0] * pred_wh[..., 1]
    # [b,1,1,1,40]
    true_area = true_wh[..., 0] * true_wh[..., 1]
    # [b,16,16,5,1]+[b,1,1,1,40]-[b,16,16,5,40]=>[b,16,16,5,40]
    union_area = pred_area + true_area - intersect_area
    # [b,16,16,5,40]
    iou_score = intersect_area / union_area
    # [b,16,16,5]
    best_iou = tf.reduce_max(iou_score, axis=4)
    # [b,16,16,5,1]
    best_iou = tf.expand_dims(best_iou, axis=-1)

    nonobj_detection = tf.cast(best_iou < 0.6, tf.float32)
    nonobj_mask = nonobj_detection * (1 - detector_mask)
    # nonobj counter
    n_nonobj = tf.reduce_sum(tf.cast(nonobj_mask > 0., tf.float32))

    nonobj_loss = tf.reduce_sum(nonobj_mask * tf.square(-pred_conf)) \
                  / (n_nonobj + 1e-6)
    obj_loss = tf.reduce_sum(detector_mask * tf.square(ious - pred_conf)) \
               / (n_detector_mask + 1e-6)

    loss = coord_loss + class_loss + nonobj_loss + 5 * obj_loss

    return loss, [nonobj_loss + 5 * obj_loss, class_loss, coord_loss]
Example #27
0
    def yolo_loss(y_true, y_pred):
        #tf.print("true", y_true.shape)
        # 1. transform all pred outputs
        # y_pred: (batch_size, grid_y, grid_x, anchors, (x, y, w, h, obj, ...cls))
        pred_box, pred_obj, pred_class, pred_xywh = yolo_boxes(
            y_pred, anchors, classes)
        pred_xy = pred_xywh[..., 0:2]
        pred_wh = pred_xywh[..., 2:4]
        #tf.print("before", y_pred[...][0, tf.random.uniform(shape=[], minval=0, maxval=16, dtype=tf.int64), tf.random.uniform(shape=[], minval=0, maxval=16, dtype=tf.int64), tf.random.uniform(shape=[], minval=0, maxval=3, dtype=tf.int64), :])

        # 2. transform all true outputs
        # y_true: (batch_size, grid_y, grid_x, anchors, (x1, y1, x2, y2, obj, cls))
        true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1),
                                                      axis=-1)
        true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
        true_wh = true_box[..., 2:4] - true_box[..., 0:2]

        # give higher weights to small boxes
        box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

        # 3. inverting the pred box equations
        grid_size = tf.shape(y_true)[1:3]
        grid = tf.meshgrid(tf.range(grid_size[1]), tf.range(grid_size[0]))
        grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
        true_xy = true_xy * tf.cast((grid_size[1], grid_size[0]), tf.float32) - \
            tf.cast(grid, tf.float32)
        true_wh = tf.math.log(true_wh / anchors)
        true_wh = tf.where(tf.math.is_inf(true_wh),
                           tf.ones_like(true_wh) * -20, true_wh)

        # 4. calculate all masks
        obj_mask = tf.squeeze(true_obj, -1)
        mask = tf.not_equal(obj_mask, 0)
        not_mask = tf.logical_not(mask)
        summarize = 20
        #tf.print("a", pred_xy.shape)
        #tf.print("b", obj_mask.shape)
        #tf.print("c", mask.shape)
        #tf.print("d", tf.boolean_mask(true_obj, mask), summarize=summarize)
        #tf.print("e", tf.boolean_mask(pred_obj, mask), summarize=summarize)
        # ignore false positive when iou is over threshold
        best_iou = tf.map_fn(
            lambda x: tf.reduce_max(broadcast_iou(
                x[0], tf.boolean_mask(x[1], tf.cast(x[2], tf.bool))),
                                    axis=-1), (pred_box, true_box, obj_mask),
            tf.float32)
        ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)

        # 5. calculate all losses
        xy_loss = obj_mask * box_loss_scale * \
            tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)
        wh_loss = obj_mask * box_loss_scale * \
            tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)
        #tf.print("losses 1", tf.math.reduce_sum(xy_loss))
        #tf.print("losses 2", tf.math.reduce_sum(wh_loss))
        #tf.print("true_obj shape", true_obj.shape, true_obj.dtype)
        #tf.print("pred_obj shape", pred_obj.shape, pred_obj.dtype)
        obj_loss = binary_crossentropy(true_obj, pred_obj)
        #tf.print("obj_loss shape", obj_loss.shape)
        #tf.print("f", tf.boolean_mask(obj_loss, mask), summarize=summarize)
        obj_loss = obj_mask * obj_loss + \
            (1 - obj_mask) * ignore_mask * obj_loss
        #tf.print("losses 3", tf.math.reduce_sum(obj_loss))
        #tf.print("g", tf.boolean_mask(y_pred, mask), summarize=summarize)
        #tf.print("h", tf.boolean_mask(y_pred, not_mask), summarize=summarize)
        #tf.print("g_true", tf.boolean_mask(y_true, mask), summarize=summarize)
        #tf.print("h_true", tf.boolean_mask(y_true, not_mask), summarize=summarize)
        #tf.cond(tf.logical_or(tf.math.is_nan(tf.math.reduce_sum(obj_loss)), tf.math.is_inf(tf.math.reduce_sum(obj_loss))), lambda: [tf.print(y_pred), y_pred][-1], lambda: y_pred)
        # TODO: use binary_crossentropy instead
        class_loss = obj_mask * sparse_categorical_crossentropy(
            true_class_idx, pred_class)

        # 6. sum over (batch, gridx, gridy, anchors) => (batch, 1)
        xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
        wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
        obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
        class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))

        loss = xy_loss + wh_loss + obj_loss + class_loss
        loss_mask = tf.logical_or(tf.math.is_nan(loss), tf.math.is_nan(loss))
        #tf.print("xy_loss", tf.boolean_mask(xy_loss, loss_mask))
        #tf.print("wh_loss", tf.boolean_mask(wh_loss, loss_mask))
        #tf.print("obj_loss", tf.boolean_mask(obj_loss, loss_mask))
        #tf.print("class_loss", tf.boolean_mask(class_loss, loss_mask))
        #tf.print("loss", tf.boolean_mask(loss, loss_mask))
        #tf.print("non entries", tf.boolean_mask(y_pred, loss_mask))
        #tf.print("tru entries", tf.boolean_mask(y_true, loss_mask))
        #tf.print("LOSS", xy_loss + wh_loss + obj_loss + class_loss)

        return xy_loss + wh_loss + obj_loss + class_loss
Example #28
0
def sparse_cat_loss(y_true, y_pred):  #wrapper
    return sparse_categorical_crossentropy(
        y_true, y_pred, from_logits=True)  #for one-hot-encoded features
    def yolo_loss(y_true, y_pred):
        # Part 1 - Transform all pred outputs:
        # y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls))
        pred_box, pred_obj, pred_class, pred_xywh = yolo_boxes(pred=y_pred,
                                                               anchors=anchors,
                                                               classes=classes)

        # Split the predicted box shape lines:
        pred_xy = pred_xywh[..., 0:2]
        pred_wh = pred_xywh[..., 2:4]

        # Part 2 - Transform all true outputs
        # y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls))
        true_box, true_obj, true_class_idx = tf.split(value=y_true,
                                                      num_or_size_splits=(4, 1,
                                                                          1),
                                                      axis=-1)

        # Split the Ground truth box shape lines:
        true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2
        true_wh = true_box[..., 2:4] - true_box[..., 0:2]

        # Allow for higher weights to small boxes:
        box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

        # Part 3 - Inverting the pred box equations:
        grid_size = tf.shape(y_true)[1]
        grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
        grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)

        # Convert true_xy to match grid size:
        true_xy = true_xy * tf.cast(grid_size, tf.float32) - tf.cast(
            grid, tf.float32)
        true_wh = tf.math.log(true_wh / anchors)
        true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh),
                           true_wh)

        # Part 4 - Compute all masks:
        obj_mask = tf.squeeze(input=true_obj, axis=-1)

        # Ignore when IoU is over the threshold stated:
        true_box_flat = tf.boolean_mask(tensor=true_box,
                                        mask=tf.cast(obj_mask, tf.bool))

        # Find the Best IoU:
        best_iou = tf.reduce_max(intersectionOverUnion(box1=pred_box,
                                                       box2=true_box_flat),
                                 axis=-1)

        # Ignore IoU:
        ignore_mask = tf.cast(best_iou < ignore_threshold, tf.float32)

        # Part 5 - Compute all losses:
        xy_loss = obj_mask * box_loss_scale * tf.reduce_sum(
            input_tensor=tf.square(true_xy - pred_xy), axis=-1)
        wh_loss = obj_mask * box_loss_scale * tf.reduce_sum(
            input_tensor=tf.square(true_wh - pred_wh), axis=-1)

        # Using binary_crossentropy for the object loss:
        obj_loss = binary_crossentropy(y_true=true_obj, y_pred=pred_obj)
        obj_loss = obj_mask * obj_loss + (1 -
                                          obj_mask) * ignore_mask * obj_loss

        # Using sparse_categorical_crossentropy instead for the classes loss:
        class_loss = obj_mask * sparse_categorical_crossentropy(
            y_true=true_class_idx, y_pred=pred_class)

        # Part 6 - Sum over (batch, gridx, gridy, anchors) => (batch, 1)
        xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
        wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
        obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
        class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))

        return xy_loss + wh_loss + obj_loss + class_loss
Example #30
0
 def sparse_categorical_crossentropy(y_true, y_pred):
     y_true = tf.cast(y_true, 'float32')
     y_pred = tf.cast(y_pred, 'float32')
     return losses.sparse_categorical_crossentropy(y_true, y_pred)