Example #1
0
def compile_train(model,
                  encoder_bioma=None,
                  encoder_domain=None,
                  reconstruction_error=losses.MeanSquaredError(),
                  encoded_comparison_error=losses.MeanAbsoluteError(),
                  metrics=[[
                      metrics.MeanSquaredError(),
                      metrics.MeanAbsoluteError(),
                      metrics.MeanAbsolutePercentageError(),
                  ],
                           [
                               metrics.MeanSquaredError(),
                               metrics.MeanAbsoluteError(),
                               metrics.MeanAbsolutePercentageError(),
                           ], [
                               metrics.MeanAbsoluteError(),
                           ]],
                  optimizer=optimizers.SGD(lr=0.01)):
    if encoder_domain is not None and encoder_bioma is not None:
        model.compile(optimizer=optimizer,
                      loss=[
                          reconstruction_error, reconstruction_error,
                          encoded_comparison_error
                      ],
                      metrics=metrics)
    elif encoder_bioma is not None:
        model.compile(optimizer=optimizer,
                      loss=reconstruction_error,
                      metrics=metrics[0])
    elif encoder_domain is not None:
        model.compile(optimizer=optimizer,
                      loss=reconstruction_error,
                      metrics=metrics[1])
    else:
        raise Exception('Not domain nor bioma models')
Example #2
0
def train_model(model, scaler, data):
    data = np.asarray(data)
    X = np.delete(data, 1, axis=1)
    y = data[:, 1]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15)
    model.compile(optimizer='adam',
                  loss='mean_squared_error',
                  metrics=[
                      metrics.MeanSquaredError(),
                      metrics.RootMeanSquaredError(),
                      metrics.MeanAbsoluteError()
                  ])
    epochs_hist = model.fit(X_train,
                            y_train,
                            epochs=50,
                            batch_size=15,
                            verbose=1,
                            validation_split=0.2)

    X_testing = np.array(X_test)
    y_predict = model.predict(X_testing)
    mse_training = epochs_hist.history['val_loss'][49]
    rmse_training = epochs_hist.history['val_root_mean_squared_error'][49]
    mae_training = epochs_hist.history['val_mean_absolute_error'][49]
    evaluation_test = model.evaluate(X_test, y_test)
    save_model(model)
    return {
        "mse_test": evaluation_test[1],
        "rmse_test": evaluation_test[2],
        "mae_test": evaluation_test[3],
        "mse_train": mse_training,
        "rmse_train": rmse_training,
        "mae_train": mae_training
    }
Example #3
0
def get_experiment_metrics(input_transform, output_transform):
    name_in = input_transform.__class__.__name__ if input_transform is not None else ""
    name_out = output_transform.__class__.__name__ if output_transform is not None else ""

    relative_in_transform = None
    relative_out_transform = None

    relative_in_transform = Percentage()
    if name_in == "":
        relative_out_transform = Percentage()
    elif name_in == CenterLogRatio.__name__ and name_out != layers.Softmax.__name__:
        relative_out_transform = layers.Softmax()

    return [
        [
            MeanSquaredErrorWrapper(y_true_transformer=input_transform,
                                    y_pred_transformer=None),
            MeanAbsoluteErrorWrapper(y_true_transformer=input_transform,
                                     y_pred_transformer=None),
            MeanAbsolutePercentageErrorWrapper(
                y_true_transformer=relative_in_transform,
                y_pred_transformer=relative_out_transform),
            BrayCurtisDissimilarity(y_true_transformer=relative_in_transform,
                                    y_pred_transformer=relative_out_transform),
            PearsonCorrelation(y_true_transformer=relative_in_transform,
                               y_pred_transformer=relative_out_transform),
            # SpearmanCorrelation(y_true_transformer=relative_in_transform,
            #                    y_pred_transformer=relative_out_transform),
            JensenShannonDivergence(y_true_transformer=relative_in_transform,
                                    y_pred_transformer=relative_out_transform),
            # CrossEntropy(y_true_transformer=relative_in_transform,
            #             y_pred_transformer=relative_out_transform),
        ],
        [
            MeanSquaredErrorWrapper(y_true_transformer=input_transform,
                                    y_pred_transformer=None),
            MeanAbsoluteErrorWrapper(y_true_transformer=input_transform,
                                     y_pred_transformer=None),
            MeanAbsolutePercentageErrorWrapper(
                y_true_transformer=relative_in_transform,
                y_pred_transformer=relative_out_transform),
            BrayCurtisDissimilarity(y_true_transformer=relative_in_transform,
                                    y_pred_transformer=relative_out_transform),
            PearsonCorrelation(y_true_transformer=relative_in_transform,
                               y_pred_transformer=relative_out_transform),
            # SpearmanCorrelation(y_true_transformer=relative_in_transform,
            #                    y_pred_transformer=relative_out_transform),
            JensenShannonDivergence(y_true_transformer=relative_in_transform,
                                    y_pred_transformer=relative_out_transform),
            # CrossEntropy(y_true_transformer=relative_in_transform,
            #             y_pred_transformer=relative_out_transform),
        ],
        [
            metrics.MeanAbsoluteError(name='mae'),
        ]
    ]
Example #4
0
def build_simple_model(dataset='Fashion Mnist',
                       opt='sgd',
                       hidden=None,
                       funcs=None,
                       loss=None,
                       metrics_list=None):
    model = models.Sequential()
    if dataset == 'CIFAR-10':
        model.add(layers.Flatten(input_shape=[32, 32, 3]))
    elif ('Fashion Mnist'):
        model.add(layers.Flatten(input_shape=[28, 28]))
    for i in hidden.keys():
        model.add(layers.Dense(hidden[i], activation=funcs[i].lower()))
    model.add(layers.Dense(10, activation="softmax"))

    loss_dict = {
        'Categorical Crossentropy': 'categorical_crossentropy',
        'Binary Crossentropy': 'binary_crossentropy',
        'Categorical Hinge': 'categorical_hinge',
        'Huber loss': 'huber_loss'
    }
    metrics_dict = {
        'auc':
        metrics.AUC(),
        'recall':
        metrics.Recall(),
        'accuracy':
        metrics.CategoricalAccuracy()
        if loss.startswith('Categorical') else metrics.Accuracy(),
        'precision':
        metrics.Precision(),
        'categorical Hinge':
        metrics.CategoricalHinge(),
        'squared Hinge':
        metrics.SquaredHinge(),
        'Kullback-Leibler divergence':
        metrics.KLDivergence(),
        'mean absolute error':
        metrics.MeanAbsoluteError(),
        'mean squared error':
        metrics.MeanSquaredError()
    }
    if metrics_list is not None and len(metrics_list) > 0:
        metrics_list = [metrics_dict.get(m, m) for m in metrics_list]
    else:
        metrics_list = ['accuracy']

    loss_f = loss_dict.get(loss)

    model.compile(loss=loss_f, optimizer=opt, metrics=metrics_list)
    return model
Example #5
0
def create_model_mean_pooling(learn_rate, epoch_num, batches, outf_layer,
                              outf_sum, filter_num, split_filters, which_sum,
                              fc):
    input_shape = (98, 98, 3)
    inputs = Input(shape=input_shape, name='image_input')
    # filter number settings
    (f1, f2, f3) = filter_num

    convolution_1 = Conv2D(f1,
                           kernel_size=(5, 5),
                           strides=(1, 1),
                           activation=outf_layer,
                           input_shape=input_shape,
                           name='c_layer_1')(inputs)
    a1 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2),
                      name='p_layer_1')(convolution_1)

    a2 = AveragePooling2D(pool_size=(2, 2), strides=(2, 2))(a1)

    a3 = AveragePooling2D(pool_size=(2, 2), strides=(2, 2))(a2)

    K = Conv2D(f2,
               kernel_size=(5, 5),
               strides=(1, 1),
               activation=outf_layer,
               name='c_layer_2')

    v1 = K(a1)
    v2 = K(a2)
    v3 = K(a3)

    flat1 = Flatten()(v1)
    flat2 = Flatten()(v2)
    flat3 = Flatten()(v3)
    merged = concatenate([flat1, flat2, flat3])

    if fc:
        s3 = Dense(1, activation=tf.keras.activations.relu)(merged)
    else:
        summed = tf.reduce_sum(merged, axis=[1])

        s3 = summed

    model = Model(inputs=inputs, outputs=s3)
    model.compile(
        loss=losses.MeanSquaredError(),
        optimizer=optimizers.Adam(learning_rate=learn_rate, name='Adam'),
        metrics=[metrics.RootMeanSquaredError(),
                 metrics.MeanAbsoluteError()])

    return model
Example #6
0
 def __get_metric(self, metric):
     if metric == "auc":
         return m.AUC()
     elif metric == "accuracy":
         return m.Accuracy()
     elif metric == "binary_accuracy":
         return m.BinaryAccuracy()
     elif metric == "categorical_accuracy":
         return m.CategoricalAccuracy()
     elif metric == "binary_crossentropy":
         return m.BinaryCrossentropy()
     elif metric == "categorical_crossentropy":
         return m.CategoricalCrossentropy()
     elif metric == "sparse_categorical_crossentropy":
         return m.SparseCategoricalCrossentropy()
     elif metric == "kl_divergence":
         return m.KLDivergence()
     elif metric == "poisson":
         return m.Poission()
     elif metric == "mse":
         return m.MeanSquaredError()
     elif metric == "rmse":
         return m.RootMeanSquaredError()
     elif metric == "mae":
         return m.MeanAbsoluteError()
     elif metric == "mean_absolute_percentage_error":
         return m.MeanAbsolutePercentageError()
     elif metric == "mean_squared_logarithm_error":
         return m.MeanSquaredLogarithmError()
     elif metric == "cosine_similarity":
         return m.CosineSimilarity()
     elif metric == "log_cosh_error":
         return m.LogCoshError()
     elif metric == "precision":
         return m.Precision()
     elif metric == "recall":
         return m.Recall()
     elif metric == "true_positive":
         return m.TruePositives()
     elif metric == "true_negative":
         return m.TrueNegatives()
     elif metric == "false_positive":
         return m.FalsePositives()
     elif metric == "false_negative":
         return m.FalseNegatives()
     else:
         raise Exception("specified metric not defined")
Example #7
0
def get_model():
    model = keras.Sequential([
        layers.Dense(32, activation='relu', input_shape=[X_train.shape[1]]),
        layers.Dense(32, activation='relu'),
        layers.Dense(2)
    ])
    optimizer = tf.keras.optimizers.Adam(lr=0.001)
    model.compile(
        loss='mse',
        optimizer=optimizer,
        metrics=[
            metrics.RootMeanSquaredError(
                name="rmse"),  # Notice I add the names here to make consistent
            metrics.MeanAbsoluteError(
                name="mae")  # Notice I add the names here to make consistent
        ])
    return model
Example #8
0
def load_simple_model(model_path='',
                      weights_path='',
                      opt='sgd',
                      loss=None,
                      metrics_list=None):
    model = models.load_model(model_path)
    model.load_weights(weights_path)
    loss_dict = {
        'Categorical Crossentropy': 'categorical_crossentropy',
        'Binary Crossentropy': 'binary_crossentropy',
        'Categorical Hinge': 'categorical_hinge',
        'Huber loss': 'huber_loss'
    }
    metrics_dict = {
        'auc':
        metrics.AUC(),
        'recall':
        metrics.Recall(),
        'accuracy':
        metrics.CategoricalAccuracy()
        if loss.startswith('Categorical') else metrics.Accuracy(),
        'precision':
        metrics.Precision(),
        'categorical Hinge':
        metrics.CategoricalHinge(),
        'squared Hinge':
        metrics.SquaredHinge(),
        'Kullback-Leibler divergence':
        metrics.KLDivergence(),
        'mean absolute error':
        metrics.MeanAbsoluteError(),
        'mean squared error':
        metrics.MeanSquaredError()
    }
    if metrics_list is not None and len(metrics_list) > 0:
        metrics_list = [metrics_dict.get(m, m) for m in metrics_list]
    else:
        metrics_list = ['accuracy']

    loss_f = loss_dict.get(loss)

    model.compile(loss=loss_f, optimizer=opt, metrics=metrics_list)
    return model
Example #9
0
def test_model(model_dir, learn_rate):
    json_file = open(model_dir + "/model.json", 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    model_number = model_dir.replace("models/klasicke/model", "")
    model = model_from_json(loaded_model_json)
    model.load_weights(model_dir + "/model.h5")
    model.compile(
        loss=losses.MeanSquaredError(),
        optimizer=optimizers.Adam(learning_rate=learn_rate, name='Adam'),
        metrics=[metrics.RootMeanSquaredError(),
                 metrics.MeanAbsoluteError()])

    images, labels = CNNutils.load_test_data("new_photos/labels/labels.csv",
                                             "new_photos/test_crops/")

    results = model.evaluate(images, labels, batch_size=16)
    print('test loss, test acc:', results)

    with open("../results/test_results.csv", 'a', newline='') as f:
        writer = csv.writer(f)
        writer.writerow((model_number, results[0], results[1], results[2]))
Example #10
0
model = tf.keras.Model(inputs=[image_input, timeseries_input],
                       outputs=[score_output, class_output])

# 模型配置

model.compile(
    optimizer=optimizers.RMSprop(1e-3),
    loss={
        "score_output": losses.MeanSquaredError(),
        "class_output": losses.CategoricalCrossentropy(from_logits=True)
    },
    metrics={
        "score_output":
        [metrics.MeanAbsolutePercentageError(),
         metrics.MeanAbsoluteError()],
        "class_output": [metrics.CategoricalAccuracy()]
    })

tf.print(model.summary())
# 数据构建

img_data = random_sample(size=(100, 32, 32, 3))
ts_data = random_sample(size=(100, 20, 10))
score_targets = random_sample(size=(100, 1))
class_targets = random_sample(size=(100, 5))

# 模型训练

model.fit({
    "img_input": img_data,
Example #11
0
class MyMeanSquaredError_class(tf.keras.losses.Loss):
    def call(self, y_true, y_pred):
        loss = tf.reduce_mean(tf.square(y_pred - y_true))
        return loss


def MyMeanSquaredError_func(): # 两个方法都可以compile
    def mean_squared_error(y_pred, y_true):
        loss = tf.reduce_mean(tf.square(y_pred - y_true))
        return loss
    return mean_squared_error

# 模型配置

model.compile(
    optimizer=optimizers.RMSprop(1e-3), 
    loss={"score_output":MyMeanSquaredError_func(), "class_output":losses.CategoricalCrossentropy(from_logits=True)}, 
    metrics={"score_output":[metrics.MeanAbsolutePercentageError(), metrics.MeanAbsoluteError()], "class_output":[metrics.CategoricalAccuracy()]}
    )

tf.print(model.summary())
# 数据构建

img_data = random_sample(size=(100,32,32,3))
ts_data = random_sample(size=(100,20,10))
score_targets = random_sample(size=(100,1))
class_targets = random_sample(size=(100,5))

# 模型训练

model.fit({"img_input":img_data, "ts_input":ts_data}, {"score_output":score_targets, "class_output":class_targets}, batch_size=32, epochs=5)
    def forecast(self, local_mse, local_normalized_scaled_unit_sales,
                 local_mean_unit_complete_time_serie, local_raw_unit_sales,
                 local_settings):
        try:
            print(
                'starting high loss (mse in previous LSTM) time_series in-block forecast submodule'
            )
            # set training parameters
            with open(''.join([local_settings['hyperparameters_path'],
                               'in_block_time_serie_based_model_hyperparameters.json'])) \
                    as local_r_json_file:
                model_hyperparameters = json.loads(local_r_json_file.read())
                local_r_json_file.close()
            local_time_series_group = np.load(''.join(
                [local_settings['train_data_path'], 'time_serie_group.npy']),
                                              allow_pickle=True)
            time_steps_days = int(local_settings['time_steps_days'])
            epochs = int(model_hyperparameters['epochs'])
            batch_size = int(model_hyperparameters['batch_size'])
            workers = int(model_hyperparameters['workers'])
            optimizer_function = model_hyperparameters['optimizer']
            optimizer_learning_rate = model_hyperparameters['learning_rate']
            if optimizer_function == 'adam':
                optimizer_function = optimizers.Adam(optimizer_learning_rate)
            elif optimizer_function == 'ftrl':
                optimizer_function = optimizers.Ftrl(optimizer_learning_rate)
            losses_list = []
            loss_1 = model_hyperparameters['loss_1']
            loss_2 = model_hyperparameters['loss_2']
            loss_3 = model_hyperparameters['loss_3']
            union_settings_losses = [loss_1, loss_2, loss_3]
            if 'mape' in union_settings_losses:
                losses_list.append(losses.MeanAbsolutePercentageError())
            if 'mse' in union_settings_losses:
                losses_list.append(losses.MeanSquaredError())
            if 'mae' in union_settings_losses:
                losses_list.append(losses.MeanAbsoluteError())
            if 'm_mape' in union_settings_losses:
                losses_list.append(modified_mape())
            if 'customized_loss_function' in union_settings_losses:
                losses_list.append(customized_loss())
            metrics_list = []
            metric1 = model_hyperparameters['metrics1']
            metric2 = model_hyperparameters['metrics2']
            union_settings_metrics = [metric1, metric2]
            if 'rmse' in union_settings_metrics:
                metrics_list.append(metrics.RootMeanSquaredError())
            if 'mse' in union_settings_metrics:
                metrics_list.append(metrics.MeanSquaredError())
            if 'mae' in union_settings_metrics:
                metrics_list.append(metrics.MeanAbsoluteError())
            if 'mape' in union_settings_metrics:
                metrics_list.append(metrics.MeanAbsolutePercentageError())
            l1 = model_hyperparameters['l1']
            l2 = model_hyperparameters['l2']
            if model_hyperparameters['regularizers_l1_l2'] == 'True':
                activation_regularizer = regularizers.l1_l2(l1=l1, l2=l2)
            else:
                activation_regularizer = None

            # searching for time_series with high loss forecast
            time_series_treated = []
            poor_results_mse_threshold = local_settings[
                'poor_results_mse_threshold']
            poor_result_time_serie_list = []
            nof_features_for_training = 0
            for result in local_mse:
                if result[1] > poor_results_mse_threshold:
                    nof_features_for_training += 1
                    poor_result_time_serie_list.append(int(result[0]))
            # nof_features_for_training = local_normalized_scaled_unit_sales.shape[0]
            nof_features_for_training = len(poor_result_time_serie_list)
            # creating model
            forecaster_in_block = tf.keras.Sequential()
            print(
                'current model for specific high loss time_series: Mix_Bid_PeepHole_LSTM_Dense_ANN'
            )
            # first layer (DENSE)
            if model_hyperparameters['units_layer_1'] > 0:
                forecaster_in_block.add(
                    layers.Dense(
                        units=model_hyperparameters['units_layer_1'],
                        activation=model_hyperparameters['activation_1'],
                        input_shape=(model_hyperparameters['time_steps_days'],
                                     nof_features_for_training),
                        activity_regularizer=activation_regularizer))
                forecaster_in_block.add(
                    layers.Dropout(
                        rate=float(model_hyperparameters['dropout_layer_1'])))
            # second LSTM layer
            if model_hyperparameters['units_layer_2'] > 0:
                forecaster_in_block.add(
                    layers.Bidirectional(
                        layers.RNN(PeepholeLSTMCell(
                            units=model_hyperparameters['units_layer_2'],
                            activation=model_hyperparameters['activation_2'],
                            activity_regularizer=activation_regularizer,
                            dropout=float(
                                model_hyperparameters['dropout_layer_2'])),
                                   return_sequences=False)))
                forecaster_in_block.add(
                    RepeatVector(model_hyperparameters['repeat_vector']))
            # third LSTM layer
            if model_hyperparameters['units_layer_3'] > 0:
                forecaster_in_block.add(
                    layers.Bidirectional(
                        layers.RNN(PeepholeLSTMCell(
                            units=model_hyperparameters['units_layer_3'],
                            activation=model_hyperparameters['activation_3'],
                            activity_regularizer=activation_regularizer,
                            dropout=float(
                                model_hyperparameters['dropout_layer_3'])),
                                   return_sequences=False)))
                forecaster_in_block.add(
                    RepeatVector(model_hyperparameters['repeat_vector']))
            # fourth layer (DENSE)
            if model_hyperparameters['units_layer_4'] > 0:
                forecaster_in_block.add(
                    layers.Dense(
                        units=model_hyperparameters['units_layer_4'],
                        activation=model_hyperparameters['activation_4'],
                        activity_regularizer=activation_regularizer))
                forecaster_in_block.add(
                    layers.Dropout(
                        rate=float(model_hyperparameters['dropout_layer_4'])))
            # final layer
            forecaster_in_block.add(
                TimeDistributed(layers.Dense(units=nof_features_for_training)))
            # forecaster_in_block.saves(''.join([local_settings['models_path'], '_model_structure_']),
            #                 save_format='tf')
            forecast_horizon_days = local_settings['forecast_horizon_days']
            forecaster_in_block.build(input_shape=(1, forecast_horizon_days,
                                                   nof_features_for_training))
            forecaster_in_block.compile(optimizer=optimizer_function,
                                        loss=losses_list,
                                        metrics=metrics_list)
            forecaster_in_block_json = forecaster_in_block.to_json()
            with open(
                    ''.join([
                        local_settings['models_path'],
                        'forecaster_in_block.json'
                    ]), 'w') as json_file:
                json_file.write(forecaster_in_block_json)
                json_file.close()
            forecaster_in_block_untrained = forecaster_in_block
            print('specific time_serie model initialized and compiled')
            nof_selling_days = local_normalized_scaled_unit_sales.shape[1]
            last_learning_day_in_year = np.mod(nof_selling_days, 365)
            max_selling_time = local_settings['max_selling_time']
            days_in_focus_frame = model_hyperparameters['days_in_focus_frame']
            window_input_length = local_settings['moving_window_input_length']
            window_output_length = local_settings[
                'moving_window_output_length']
            moving_window_length = window_input_length + window_output_length
            nof_years = local_settings['number_of_years_ceil']

            # training
            # time_serie_data = local_normalized_scaled_unit_sales
            nof_poor_result_time_series = len(poor_result_time_serie_list)
            time_serie_data = np.zeros(shape=(nof_poor_result_time_series,
                                              max_selling_time))
            time_serie_iterator = 0
            for time_serie in poor_result_time_serie_list:
                time_serie_data[
                    time_serie_iterator, :] = local_normalized_scaled_unit_sales[
                        time_serie, :]
                time_serie_iterator += 1
            if local_settings['repeat_training_in_block'] == "True":
                print(
                    'starting in-block training of model for high_loss time_series in previous model'
                )
                nof_selling_days = time_serie_data.shape[1]
                # nof_moving_windows = np.int32(nof_selling_days / moving_window_length)
                remainder_days = np.mod(nof_selling_days, moving_window_length)
                window_first_days = [
                    first_day for first_day in range(0, nof_selling_days,
                                                     moving_window_length)
                ]
                length_window_walk = len(window_first_days)
                # last_window_start = window_first_days[length_window_walk - 1]
                if remainder_days != 0:
                    window_first_days[
                        length_window_walk -
                        1] = nof_selling_days - moving_window_length
                day_in_year = []
                [
                    day_in_year.append(last_learning_day_in_year + year * 365)
                    for year in range(nof_years)
                ]
                stride_window_walk = model_hyperparameters[
                    'stride_window_walk']
                print('defining x_train')
                x_train = []
                if local_settings['train_model_input_data_approach'] == "all":
                    [
                        x_train.append(
                            time_serie_data[:, day - time_steps_days:day -
                                            window_output_length])
                        for day in range(time_steps_days, max_selling_time,
                                         stride_window_walk)
                    ]
                elif local_settings[
                        'train_model_input_data_approach'] == "focused":
                    [
                        x_train.append(time_serie_data[:, day:day +
                                                       time_steps_days])
                        for last_day in day_in_year[:-1] for day in range(
                            last_day + window_output_length, last_day +
                            window_output_length -
                            days_in_focus_frame, -stride_window_walk)
                    ]
                    # border condition, take care with last year, working with last data available, yeah really!!
                    [
                        x_train.append(
                            np.concatenate(
                                (time_serie_data[:, day -
                                                 window_output_length:day],
                                 np.zeros(shape=(nof_poor_result_time_series,
                                                 time_steps_days -
                                                 window_output_length))),
                                axis=1))
                        for last_day in day_in_year[-1:] for day in range(
                            last_day, last_day -
                            days_in_focus_frame, -stride_window_walk)
                    ]
                else:
                    logging.info(
                        "\ntrain_model_input_data_approach is not defined")
                    print('-a problem occurs with the data_approach settings')
                    return False, None
                print('defining y_train')
                y_train = []
                if local_settings['train_model_input_data_approach'] == "all":
                    [
                        y_train.append(time_serie_data[:, day -
                                                       time_steps_days:day])
                        for day in range(time_steps_days, max_selling_time,
                                         stride_window_walk)
                    ]
                elif local_settings[
                        'train_model_input_data_approach'] == "focused":
                    [
                        y_train.append(time_serie_data[:, day:day +
                                                       time_steps_days])
                        for last_day in day_in_year[:-1] for day in range(
                            last_day + window_output_length, last_day +
                            window_output_length -
                            days_in_focus_frame, -stride_window_walk)
                    ]
                    # border condition, take care with last year, working with last data available, yeah really!!
                    [
                        y_train.append(
                            np.concatenate(
                                (time_serie_data[:, day -
                                                 window_output_length:day],
                                 np.zeros(shape=(nof_poor_result_time_series,
                                                 time_steps_days -
                                                 window_output_length))),
                                axis=1))
                        for last_day in day_in_year[-1:] for day in range(
                            last_day, last_day -
                            days_in_focus_frame, -stride_window_walk)
                    ]

                # if time_enhance is active, assigns more weight to the last time_steps according to enhance_last_stride
                if local_settings['time_enhance'] == 'True':
                    enhance_last_stride = local_settings['enhance_last_stride']
                    last_elements = []
                    length_x_y_train = len(x_train)
                    x_train_enhanced, y_train_enhanced = [], []
                    enhance_iterator = 1
                    for position in range(
                            length_x_y_train - enhance_last_stride,
                            length_x_y_train, -1):
                        [
                            x_train_enhanced.append(x_train[position])
                            for enhance in range(1, 3 * (enhance_iterator + 1))
                        ]
                        [
                            y_train_enhanced.append(y_train[position])
                            for enhance in range(1, 3 * (enhance_iterator + 1))
                        ]
                        enhance_iterator += 1
                    x_train = x_train[:-enhance_last_stride]
                    [
                        x_train.append(time_step)
                        for time_step in x_train_enhanced
                    ]
                    y_train = y_train[:-enhance_last_stride]
                    [
                        y_train.append(time_step)
                        for time_step in y_train_enhanced
                    ]

                # broadcasts lists to np arrays and applies the last pre-training preprocessing (amplification)
                x_train = np.array(x_train)
                y_train = np.array(y_train)
                print('x_train_shape:  ', x_train.shape)
                if local_settings['amplification'] == 'True':
                    factor = local_settings[
                        'amplification_factor']  # factor tuning was done previously
                    for time_serie_iterator in range(np.shape(x_train)[1]):
                        max_time_serie = np.amax(
                            x_train[:, time_serie_iterator, :])
                        x_train[:, time_serie_iterator, :][x_train[:, time_serie_iterator, :] > 0] = \
                            max_time_serie * factor
                        max_time_serie = np.amax(
                            y_train[:, time_serie_iterator, :])
                        y_train[:, time_serie_iterator, :][y_train[:, time_serie_iterator, :] > 0] = \
                            max_time_serie * factor
                print('x_train and y_train built done')

                # define callbacks, checkpoints namepaths
                model_weights = ''.join([
                    local_settings['checkpoints_path'],
                    'check_point_model_for_high_loss_time_serie_',
                    model_hyperparameters['current_model_name'],
                    "_loss_-{loss:.4f}-.hdf5"
                ])
                callback1 = cb.EarlyStopping(
                    monitor='loss',
                    patience=model_hyperparameters['early_stopping_patience'])
                callback2 = cb.ModelCheckpoint(model_weights,
                                               monitor='loss',
                                               verbose=1,
                                               save_best_only=True,
                                               mode='min')
                callbacks = [callback1, callback2]
                x_train = x_train.reshape(
                    (np.shape(x_train)[0], np.shape(x_train)[2],
                     np.shape(x_train)[1]))
                y_train = y_train.reshape(
                    (np.shape(y_train)[0], np.shape(y_train)[2],
                     np.shape(y_train)[1]))
                print('input_shape: ', np.shape(x_train))

                # train for each time_serie
                # check settings for repeat or not the training
                forecaster_in_block.fit(x_train,
                                        y_train,
                                        batch_size=batch_size,
                                        epochs=epochs,
                                        workers=workers,
                                        callbacks=callbacks,
                                        shuffle=False)
                # print summary (informative; but if says "shape = multiple", probably useless)
                forecaster_in_block.summary()
                forecaster_in_block.save(''.join([
                    local_settings['models_path'],
                    '_high_loss_time_serie_model_forecaster_in_block_.h5'
                ]))
                forecaster_in_block.save_weights(''.join([
                    local_settings['models_path'],
                    '_weights_high_loss_ts_model_forecaster_in_block_.h5'
                ]))
                print(
                    'high loss time_series model trained and saved in hdf5 format .h5'
                )
            else:
                forecaster_in_block.load_weights(''.join([
                    local_settings['models_path'],
                    '_weights_high_loss_ts_model_forecaster_in_block_.h5'
                ]))
                # forecaster_in_block = models.load_model(''.join([local_settings['models_path'],
                #                                                  '_high_loss_time_serie_model_forecaster_.h5']))
                print('weights of previously trained model loaded')

            # compile model and make forecast (not necessary)
            # forecaster_in_block.compile(optimizer='adam', loss='mse')

            # evaluating model and comparing with aggregated (in-block) LSTM
            print('evaluating the model trained..')
            time_serie_data = time_serie_data.reshape(
                (1, time_serie_data.shape[1], time_serie_data.shape[0]))
            x_input = time_serie_data[:, -forecast_horizon_days:, :]
            y_pred_normalized = forecaster_in_block.predict(x_input)
            # print('output shape: ', y_pred_normalized.shape)
            time_serie_data = time_serie_data.reshape(
                (time_serie_data.shape[2], time_serie_data.shape[1]))
            # print('time_serie data shape: ', np.shape(time_serie_data))
            time_serie_iterator = 0
            improved_time_series_forecast = []
            time_series_not_improved = []
            improved_mse = []
            for time_serie in poor_result_time_serie_list:
                # for time_serie in range(local_normalized_scaled_unit_sales.shape[0]):
                y_truth = local_raw_unit_sales[time_serie:time_serie + 1,
                                               -forecast_horizon_days:]
                # print('y_truth shape:', y_truth.shape)

                # reversing preprocess: rescale, denormalize, reshape
                # inverse reshape
                y_pred_reshaped = y_pred_normalized.reshape(
                    (y_pred_normalized.shape[2], y_pred_normalized.shape[1]))
                y_pred_reshaped = y_pred_reshaped[
                    time_serie_iterator:time_serie_iterator + 1, :]
                # print('y_pred_reshaped shape:', y_pred_reshaped.shape)

                # inverse transform (first moving_windows denormalizing and then general rescaling)
                time_serie_normalized_window_mean = np.mean(
                    time_serie_data[time_serie_iterator,
                                    -moving_window_length:])
                # print('mean of this time serie (normalized values): ', time_serie_normalized_window_mean)
                local_denormalized_array = window_based_denormalizer(
                    y_pred_reshaped, time_serie_normalized_window_mean,
                    forecast_horizon_days)
                local_point_forecast = general_mean_rescaler(
                    local_denormalized_array,
                    local_mean_unit_complete_time_serie[time_serie],
                    forecast_horizon_days)
                # print('rescaled denormalized forecasts array shape: ', local_point_forecast.shape)

                # calculating MSE
                # print(y_truth.shape)
                # print(local_point_forecast.shape)
                local_error_metric_mse = mean_squared_error(
                    y_truth, local_point_forecast)
                # print('time_serie: ', time_serie, '\tMean_Squared_Error: ', local_error_metric_mse)
                previous_result = local_mse[:, 1][local_mse[:, 0] ==
                                                  time_serie].item()
                time_series_treated.append(
                    [int(time_serie), previous_result, local_error_metric_mse])
                if local_error_metric_mse < previous_result:
                    # print('better results with time_serie specific model training')
                    print(time_serie, 'MSE improved from ', previous_result,
                          'to ', local_error_metric_mse)
                    improved_time_series_forecast.append(int(time_serie))
                    improved_mse.append(local_error_metric_mse)
                else:
                    # print('no better results with time serie specific model training')
                    # print('MSE not improved from: ', previous_result, '\t current mse: ', local_error_metric_mse)
                    time_series_not_improved.append(int(time_serie))
                time_serie_iterator += 1
            time_series_treated = np.array(time_series_treated)
            improved_mse = np.array(improved_mse)
            average_mse_in_block_forecast = np.mean(time_series_treated[:, 2])
            average_mse_improved_ts = np.mean(improved_mse)
            print('poor result time serie list len:',
                  len(poor_result_time_serie_list))
            print('mean_mse for in-block forecast:',
                  average_mse_in_block_forecast)
            print(
                'number of time series with better results with this forecast: ',
                len(improved_time_series_forecast))
            print(
                'mean_mse of time series with better results with this forecast: ',
                average_mse_improved_ts)
            print('not improved time series =', len(time_series_not_improved))
            time_series_treated = np.array(time_series_treated)
            improved_time_series_forecast = np.array(
                improved_time_series_forecast)
            time_series_not_improved = np.array(time_series_not_improved)
            poor_result_time_serie_array = np.array(
                poor_result_time_serie_list)
            # store data of (individual-approach) time_series forecast successfully improved and those that not
            np.save(
                ''.join([
                    local_settings['models_evaluation_path'],
                    'poor_result_time_serie_array'
                ]), poor_result_time_serie_array)
            np.save(
                ''.join([
                    local_settings['models_evaluation_path'],
                    'time_series_forecast_results'
                ]), time_series_treated)
            np.save(
                ''.join([
                    local_settings['models_evaluation_path'],
                    'improved_time_series_forecast'
                ]), improved_time_series_forecast)
            np.save(
                ''.join([
                    local_settings['models_evaluation_path'],
                    'time_series_not_improved'
                ]), time_series_not_improved)
            np.savetxt(''.join([
                local_settings['models_evaluation_path'],
                'time_series_forecast_results.csv'
            ]),
                       time_series_treated,
                       fmt='%10.15f',
                       delimiter=',',
                       newline='\n')
            forecaster_in_block_json = forecaster_in_block.to_json()
            with open(''.join([local_settings['models_path'], 'high_loss_time_serie_model_forecaster_in_block.json']), 'w') \
                    as json_file:
                json_file.write(forecaster_in_block_json)
                json_file.close()
            print('trained model weights and architecture saved')
            print('metadata (results, time_serie with high loss) saved')
            print(
                'forecast improvement done. (high loss time_serie focused) submodule has finished'
            )
        except Exception as submodule_error:
            print('time_series in-block forecast submodule_error: ',
                  submodule_error)
            logger.info(
                'error in forecast of in-block time_series (high_loss_identified_ts_forecast submodule)'
            )
            logger.error(str(submodule_error), exc_info=True)
            return False
        return True
Example #13
0
def create_model(learn_rate, epoch_num, batches, outf_layer, outf_sum,
                 filter_num, split_filters, which_sum, fc):
    input_shape = (98, 98, 3)
    inputs = Input(shape=input_shape, name='image_input')
    # filter number settings
    (f1, f2, f3) = filter_num
    # 3 filters for summing
    if split_filters:
        (f1, f2, f3) = (int(f1 - 3), int(f2 - 3), int(f3))

    # normal layer
    convolution_1 = Conv2D(f1,
                           kernel_size=(5, 5),
                           strides=(1, 1),
                           activation=outf_layer,
                           input_shape=input_shape,
                           name='c_layer_1')(inputs)
    s1 = tf.reduce_sum(convolution_1, axis=[1, 2, 3], name='c_layer_1_sum')
    pooling_1 = MaxPooling2D(pool_size=(2, 2),
                             strides=(2, 2),
                             name='p_layer_1')(convolution_1)
    if split_filters:
        # sum "layer"
        s1 = tf.reduce_sum(Conv2D(3,
                                  kernel_size=(5, 5),
                                  strides=(1, 1),
                                  activation=outf_sum,
                                  input_shape=input_shape)(inputs),
                           name='c_layer_1_sum')

    convolution_2 = Conv2D(f2,
                           kernel_size=(5, 5),
                           strides=(1, 1),
                           activation=outf_layer,
                           input_shape=input_shape,
                           name='c_layer_2')(pooling_1)
    s2 = tf.reduce_sum(convolution_2, axis=[1, 2, 3], name='c_layer_2_sum')
    pooling_2 = MaxPooling2D(pool_size=(2, 2),
                             strides=(2, 2),
                             name='p_layer_2')(convolution_2)
    if split_filters:
        s2 = tf.reduce_sum(Conv2D(3,
                                  kernel_size=(5, 5),
                                  strides=(1, 1),
                                  activation=outf_sum,
                                  input_shape=input_shape)(pooling_1),
                           name='c_layer_2_sum')

    convolution_3 = Conv2D(f3,
                           kernel_size=(5, 5),
                           strides=(1, 1),
                           activation=outf_sum,
                           input_shape=input_shape,
                           name='c_layer_3')(pooling_2)

    if fc:
        flat = Flatten()(convolution_3)
        s3 = Dense(1, activation=outf_sum)(flat)
    else:
        s3 = tf.reduce_sum(convolution_3, axis=[1, 2, 3], name='c_layer_3_sum')

    y_pred = s3
    for i, s in enumerate([s1, s2]):
        if which_sum[i] == 1:
            y_pred += s

    model = Model(inputs=inputs, outputs=s3)
    model.compile(
        loss=losses.MeanSquaredError(),
        optimizer=optimizers.Adam(learning_rate=learn_rate, name='Adam'),
        metrics=[metrics.RootMeanSquaredError(),
                 metrics.MeanAbsoluteError()])

    return model
Example #14
0
def build_model(local_bm_hyperparameters, local_bm_settings):
    model_built = 0
    time_steps_days = int(local_bm_hyperparameters['time_steps_days'])
    epochs = int(local_bm_hyperparameters['epochs'])
    batch_size = int(local_bm_hyperparameters['batch_size'])
    workers = int(local_bm_hyperparameters['workers'])
    optimizer_function = local_bm_hyperparameters['optimizer']
    optimizer_learning_rate = local_bm_hyperparameters['learning_rate']
    if optimizer_function == 'adam':
        optimizer_function = optimizers.Adam(optimizer_learning_rate)
    elif optimizer_function == 'ftrl':
        optimizer_function = optimizers.Ftrl(optimizer_learning_rate)
    losses_list = []
    loss_1 = local_bm_hyperparameters['loss_1']
    loss_2 = local_bm_hyperparameters['loss_2']
    loss_3 = local_bm_hyperparameters['loss_3']
    union_settings_losses = [loss_1, loss_2, loss_3]
    if 'mape' in union_settings_losses:
        losses_list.append(losses.MeanAbsolutePercentageError())
    if 'mse' in union_settings_losses:
        losses_list.append(losses.MeanSquaredError())
    if 'mae' in union_settings_losses:
        losses_list.append(losses.MeanAbsoluteError())
    if 'm_mape' in union_settings_losses:
        losses_list.append(modified_mape())
    if 'customized_loss_function' in union_settings_losses:
        losses_list.append(customized_loss())
    metrics_list = []
    metric1 = local_bm_hyperparameters['metrics1']
    metric2 = local_bm_hyperparameters['metrics2']
    union_settings_metrics = [metric1, metric2]
    if 'rmse' in union_settings_metrics:
        metrics_list.append(metrics.RootMeanSquaredError())
    if 'mse' in union_settings_metrics:
        metrics_list.append(metrics.MeanSquaredError())
    if 'mae' in union_settings_metrics:
        metrics_list.append(metrics.MeanAbsoluteError())
    if 'mape' in union_settings_metrics:
        metrics_list.append(metrics.MeanAbsolutePercentageError())
    l1 = local_bm_hyperparameters['l1']
    l2 = local_bm_hyperparameters['l2']
    if local_bm_hyperparameters['regularizers_l1_l2'] == 'True':
        activation_regularizer = regularizers.l1_l2(l1=l1, l2=l2)
    else:
        activation_regularizer = None
    nof_features_for_training = local_bm_hyperparameters[
        'nof_features_for_training']
    # creating model
    forecaster_in_block = tf.keras.Sequential()
    print('creating the ANN model...')
    # first layer (DENSE)
    if local_bm_hyperparameters['units_layer_1'] > 0:
        forecaster_in_block.add(
            layers.Dense(
                units=local_bm_hyperparameters['units_layer_1'],
                activation=local_bm_hyperparameters['activation_1'],
                input_shape=(local_bm_hyperparameters['time_steps_days'],
                             nof_features_for_training),
                activity_regularizer=activation_regularizer))
        forecaster_in_block.add(
            layers.Dropout(
                rate=float(local_bm_hyperparameters['dropout_layer_1'])))
    # second LSTM layer
    if local_bm_hyperparameters[
            'units_layer_2'] > 0 and local_bm_hyperparameters[
                'units_layer_1'] > 0:
        forecaster_in_block.add(
            layers.Bidirectional(
                layers.LSTM(
                    units=local_bm_hyperparameters['units_layer_2'],
                    activation=local_bm_hyperparameters['activation_2'],
                    activity_regularizer=activation_regularizer,
                    dropout=float(local_bm_hyperparameters['dropout_layer_2']),
                    return_sequences=False)))
        forecaster_in_block.add(
            RepeatVector(local_bm_hyperparameters['repeat_vector']))
    # third LSTM layer
    if local_bm_hyperparameters['units_layer_3'] > 0:
        forecaster_in_block.add(
            layers.Bidirectional(
                layers.LSTM(
                    units=local_bm_hyperparameters['units_layer_3'],
                    activation=local_bm_hyperparameters['activation_3'],
                    activity_regularizer=activation_regularizer,
                    dropout=float(local_bm_hyperparameters['dropout_layer_3']),
                    return_sequences=True)))
        if local_bm_hyperparameters['units_layer_4'] == 0:
            forecaster_in_block.add(
                RepeatVector(local_bm_hyperparameters['repeat_vector']))
    # fourth layer (DENSE)
    if local_bm_hyperparameters['units_layer_4'] > 0:
        forecaster_in_block.add(
            layers.Dense(units=local_bm_hyperparameters['units_layer_4'],
                         activation=local_bm_hyperparameters['activation_4'],
                         activity_regularizer=activation_regularizer))
        forecaster_in_block.add(
            layers.Dropout(
                rate=float(local_bm_hyperparameters['dropout_layer_4'])))
    # final layer
    forecaster_in_block.add(
        TimeDistributed(layers.Dense(units=nof_features_for_training)))
    forecaster_in_block.save(''.join(
        [local_bm_settings['models_path'], 'in_block_NN_model_structure_']),
                             save_format='tf')
    forecast_horizon_days = local_bm_settings['forecast_horizon_days']
    forecaster_in_block.build(input_shape=(1, forecast_horizon_days + 1,
                                           nof_features_for_training))
    forecaster_in_block.compile(optimizer=optimizer_function,
                                loss=losses_list,
                                metrics=metrics_list)
    forecaster_in_block_json = forecaster_in_block.to_json()
    with open(
            ''.join([
                local_bm_settings['models_path'],
                'freq_acc_forecaster_in_block.json'
            ]), 'w') as json_file:
        json_file.write(forecaster_in_block_json)
        json_file.close()
    print(
        'build_model function finish (model structure saved in json and ts formats)'
    )
    return True, model_built
Example #15
0
    def _build_model(self):
        # Input layer
        inputs = tf.keras.Input(shape=(self.timesteps, self.feature_dim),
                                name="inputs")

        # Shared layer
        previous_layer = inputs
        for layer in range(self.num_shared_layer):
            # Do not return sequences in the last LSTM layer
            return_sequences = False if self.num_specialized_layer == 0 and layer == self.num_shared_layer - 1 else True
            shared_lstm_layer = layers.LSTM(
                self.neurons_per_layer,
                implementation=2,
                kernel_initializer="glorot_uniform",
                return_sequences=return_sequences,
                dropout=self.dropout)(previous_layer)
            shared_lstm_normalization_layer = layers.LayerNormalization()(
                shared_lstm_layer)
            previous_layer = shared_lstm_normalization_layer

        previous_layer_next_activity = previous_layer
        previous_layer_final_activity = previous_layer
        previous_layer_next_timestamp = previous_layer
        previous_layer_final_timestamp = previous_layer
        for layer in range(self.num_specialized_layer):
            # Do not return sequences in the last LSTM layer
            return_sequences = False if layer == self.num_specialized_layer - 1 else True
            next_activity_lstm_layer = layers.LSTM(
                self.neurons_per_layer,
                implementation=2,
                kernel_initializer="glorot_uniform",
                return_sequences=return_sequences,
                dropout=self.dropout)(previous_layer_next_activity)
            final_activity_lstm_layer = layers.LSTM(
                self.neurons_per_layer,
                implementation=2,
                kernel_initializer="glorot_uniform",
                return_sequences=return_sequences,
                dropout=self.dropout)(previous_layer_final_activity)
            next_timestamp_lstm_layer = layers.LSTM(
                self.neurons_per_layer,
                implementation=2,
                kernel_initializer="glorot_uniform",
                return_sequences=return_sequences,
                dropout=self.dropout)(previous_layer_next_timestamp)
            final_timestamp_lstm_layer = layers.LSTM(
                self.neurons_per_layer,
                implementation=2,
                kernel_initializer="glorot_uniform",
                return_sequences=return_sequences,
                dropout=self.dropout)(previous_layer_final_timestamp)
            next_activity_normalization_layer = layers.LayerNormalization()(
                next_activity_lstm_layer)
            final_activity_normalization_layer = layers.LayerNormalization()(
                final_activity_lstm_layer)
            next_timestamp_normalization_layer = layers.LayerNormalization()(
                next_timestamp_lstm_layer)
            final_timestamp_normalization_layer = layers.LayerNormalization()(
                final_timestamp_lstm_layer)
            previous_layer_next_activity = next_activity_normalization_layer
            previous_layer_final_activity = final_activity_normalization_layer
            previous_layer_next_timestamp = next_timestamp_normalization_layer
            previous_layer_final_timestamp = final_timestamp_normalization_layer

        # Output layer
        next_activity_output = layers.Dense(
            len(self.activities) + 1,
            activation="softmax",
            kernel_initializer="glorot_uniform",
            name="next_activity_output")(previous_layer_next_activity)
        final_activity_output = layers.Dense(
            len(self.activities),
            activation="softmax",
            kernel_initializer="glorot_uniform",
            name="final_activity_output")(previous_layer_final_activity)
        next_timestamp_ouput = layers.Dense(
            1,
            kernel_initializer="glorot_uniform",
            name="next_timestamp_output")(previous_layer_next_timestamp)
        final_timestamp_ouput = layers.Dense(
            1,
            kernel_initializer="glorot_uniform",
            name="final_timestamp_output")(previous_layer_final_timestamp)

        # Build and configure model
        model = tf.keras.Model(inputs=[inputs],
                               outputs=[
                                   next_activity_output, final_activity_output,
                                   next_timestamp_ouput, final_timestamp_ouput
                               ])
        optimizer_param = tf.keras.optimizers.Nadam(
            learning_rate=self.learning_rate,
            beta_1=0.9,
            beta_2=0.999,
            epsilon=1e-07,
            name="Nadam")
        metric_param = {
            "next_activity_output": metrics.CategoricalAccuracy(),
            "final_activity_output": metrics.CategoricalAccuracy(),
            "next_timestamp_output": metrics.MeanAbsoluteError(),
            "final_timestamp_output": metrics.MeanAbsoluteError()
        }
        loss_param = {
            "next_activity_output": "categorical_crossentropy",
            "final_activity_output": "categorical_crossentropy",
            "next_timestamp_output": "mae",
            "final_timestamp_output": "mae"
        }
        model.compile(loss=loss_param,
                      metrics=metric_param,
                      optimizer=optimizer_param)
        self.model = model
Example #16
0
import math

import tensorflow as tf
from tensorflow.keras import layers, Model, metrics
from tqdm import tqdm

from ._loss import quantization, silhouette, convex_hull_loss, quantization_fast

mae_metric = metrics.MeanAbsoluteError(name="mae")
loss_tracker = metrics.Mean(name="loss")


class DualModel(Model):

    def __init__(self, n_samples, k_prototypes, deep=True, *args, **kwargs):
        super().__init__(*args, **kwargs)
        input = layers.Input(shape=(n_samples,))
        if deep:
            x = layers.Dense(k_prototypes, activation='tanh')(input)
            x = layers.Dense(k_prototypes, activation='tanh')(x)
            output = layers.Dense(k_prototypes)(x)
        else:
            output = layers.Dense(k_prototypes)(input)
        self.dual_model = tf.keras.Model(inputs=input, outputs=output)

    def fit(self, X, y, epochs, verbose=True):
        # Unpack the data. Its structure depends on your model and
        # on what you pass to `fit()`.

        pbar = tqdm(range(epochs)) if verbose else None
        x = tf.Variable(X, dtype='float32')
Example #17
0
def construct_lstm_cnn(look_forward, look_back=30, compile=True, single_output=False):
    cnn = construct_cnn(look_forward, fc=False)
    cnn_flatten = Flatten()(cnn.output)
    lstm = construct_lstm(look_forward, look_back, 2, fc=False)
    
    #Merged layer
    merged_outputs = []
    cnn_lstm = concatenate([cnn_flatten, lstm.output])
    fc_merged    = Dense(500, activation='relu')(cnn_lstm)
    drop_merged  = Dropout(0.5)(fc_merged)
    fc2_merged   = Dense(100, activation='relu')(drop_merged)
    drop2_merged = Dropout(0.5)(fc2_merged)
    fc3_merged   = Dense(25 , activation='relu')(drop2_merged)
    drop3_merged = Dropout(0.5)(fc3_merged)
    if not single_output:
        for i in range(look_forward):
            pred_merged = Dense(1, activation='linear', name='merged_output_' + str(i))(drop3_merged)
            merged_outputs.append(pred_merged)
    else:
        pred_merged = Dense(1, activation='linear', name='merged_output_t_' + str(look_forward))(drop3_merged)
        merged_outputs.append(pred_merged)
    
    #Auxiliary branch for cnn
    cnn_outputs = []
    fc_cnn    = Dense(500, activation='relu')(cnn_flatten)
    drop_cnn  = Dropout(0.5)(fc_cnn)
    fc2_cnn   = Dense(100, activation='relu')(drop_cnn)
    drop2_cnn = Dropout(0.5)(fc2_cnn)
    fc3_cnn   = Dense(25 , activation='relu')(drop2_cnn)
    drop3_cnn = Dropout(0.5)(fc3_cnn)
    if not single_output:
        for i in range(look_forward):
            pred_cnn_aux = Dense(1, activation='linear', name='cnn_aux_output_' + str(i))(drop3_cnn)
            cnn_outputs.append(pred_cnn_aux)
    else:
        pred_cnn_aux = Dense(1, activation='linear', name='cnn_aux_output_t_' + str(look_forward))(drop3_cnn)
        cnn_outputs.append(pred_cnn_aux)
    
    #Auxiliary branch for lstm
    lstm_outputs = []
    fc_lstm    = Dense(500, activation='relu')(lstm.output)
    drop_lstm  = Dropout(0.5)(fc_lstm)
    fc2_lstm   = Dense(100, activation='relu')(drop_lstm)
    drop2_lstm = Dropout(0.5)(fc2_lstm)
    fc3_lstm   = Dense(25 , activation='relu')(drop2_lstm)
    drop3_lstm = Dropout(0.5)(fc3_lstm)
    if not single_output:
        for i in range(look_forward):
            pred_lstm_aux = Dense(1, activation='linear', name='lstm_aux_output_' + str(i))(drop3_lstm)
            lstm_outputs.append(pred_lstm_aux)
    else:
        pred_lstm_aux = Dense(1, activation='linear', name='lstm_aux_output_' + str(look_forward))(drop3_lstm)
        lstm_outputs.append(pred_lstm_aux)
    
    #Final model with three branches
    model = Model(inputs=[cnn.input, lstm.input], outputs=(merged_outputs + cnn_outputs + lstm_outputs), name="lstm-cnn")
    if compile:
        if not single_output:
            loss_weights = [1 for i in range(look_forward)] + [0.2 for i in range(look_forward)] + [0.2 for i in range(look_forward)]
        else:
            loss_weights = [1, 0.2, 0.2]
        model.compile(optimizer='adam', loss=rmse_loss, loss_weights=loss_weights, metrics=[metrics.RootMeanSquaredError(name='rmse'), 
                                                                                            metrics.MeanAbsolutePercentageError(name='mape'),
                                                                                            metrics.MeanAbsoluteError(name='mae')])
    return model
    def train_model(self, local_settings, local_raw_unit_sales,
                    local_model_hyperparameters):
        try:
            # loading hyperparameters
            local_days_in_focus = local_model_hyperparameters[
                'days_in_focus_frame']
            local_raw_unit_sales_data = local_raw_unit_sales[:,
                                                             -local_days_in_focus:]
            local_nof_ts = local_raw_unit_sales.shape[0]
            local_forecast_horizon_days = local_settings[
                'forecast_horizon_days']
            local_features_for_each_training = 1
            print(
                'starting neural network - individual time_serie training unit_sale_approach'
            )

            # building architecture and compiling model_template
            # set training parameters
            local_time_steps_days = int(local_settings['time_steps_days'])
            local_epochs = int(local_model_hyperparameters['epochs'])
            local_batch_size = int(local_model_hyperparameters['batch_size'])
            local_workers = int(local_model_hyperparameters['workers'])
            local_optimizer_function = local_model_hyperparameters['optimizer']
            local_optimizer_learning_rate = local_model_hyperparameters[
                'learning_rate']
            local_validation_split = local_model_hyperparameters[
                'validation_split']
            if local_optimizer_function == 'adam':
                local_optimizer_function = optimizers.Adam(
                    local_optimizer_learning_rate)
            elif local_optimizer_function == 'ftrl':
                local_optimizer_function = optimizers.Ftrl(
                    local_optimizer_learning_rate)
            local_losses_list = []
            local_loss_1 = local_model_hyperparameters['loss_1']
            local_loss_2 = local_model_hyperparameters['loss_2']
            local_loss_3 = local_model_hyperparameters['loss_3']
            local_union_settings_losses = [
                local_loss_1, local_loss_2, local_loss_3
            ]
            if 'mape' in local_union_settings_losses:
                local_losses_list.append(losses.MeanAbsolutePercentageError())
            if 'mse' in local_union_settings_losses:
                local_losses_list.append(losses.MeanSquaredError())
            if 'mae' in local_union_settings_losses:
                local_losses_list.append(losses.MeanAbsoluteError())
            if 'm_mape' in local_union_settings_losses:
                local_losses_list.append(modified_mape())
            if 'customized_loss_function' in local_union_settings_losses:
                local_losses_list.append(customized_loss())
            if 'pinball_loss_function' in local_union_settings_losses:
                local_losses_list.append(pinball_function_loss())
            local_metrics_list = []
            local_metric1 = local_model_hyperparameters['metrics1']
            local_metric2 = local_model_hyperparameters['metrics2']
            local_union_settings_metrics = [local_metric1, local_metric2]
            if 'rmse' in local_union_settings_metrics:
                local_metrics_list.append(metrics.RootMeanSquaredError())
            if 'mse' in local_union_settings_metrics:
                local_metrics_list.append(metrics.MeanSquaredError())
            if 'mae' in local_union_settings_metrics:
                local_metrics_list.append(metrics.MeanAbsoluteError())
            if 'mape' in local_union_settings_metrics:
                local_metrics_list.append(
                    metrics.MeanAbsolutePercentageError())
            local_l1 = local_model_hyperparameters['l1']
            local_l2 = local_model_hyperparameters['l2']
            if local_model_hyperparameters['regularizers_l1_l2'] == 'True':
                local_activation_regularizer = regularizers.l1_l2(l1=local_l1,
                                                                  l2=local_l2)
            else:
                local_activation_regularizer = None
            # define callbacks, checkpoints namepaths
            local_callback1 = cb.EarlyStopping(
                monitor='loss',
                patience=local_model_hyperparameters['early_stopping_patience']
            )
            local_callbacks = [local_callback1]
            print(
                'building current model: individual_time_serie_acc_freq_LSTM_Dense_ANN'
            )
            local_base_model = tf.keras.Sequential()
            # first layer (LSTM)
            if local_model_hyperparameters['units_layer_1'] > 0:
                local_base_model.add(
                    layers.LSTM(
                        units=local_model_hyperparameters['units_layer_1'],
                        activation=local_model_hyperparameters['activation_1'],
                        input_shape=(
                            local_model_hyperparameters['time_steps_days'],
                            local_features_for_each_training),
                        dropout=float(
                            local_model_hyperparameters['dropout_layer_1']),
                        activity_regularizer=local_activation_regularizer,
                        return_sequences=True))
            # second LSTM layer
            if local_model_hyperparameters['units_layer_2'] > 0:
                local_base_model.add(
                    layers.Bidirectional(
                        layers.LSTM(
                            units=local_model_hyperparameters['units_layer_2'],
                            activation=local_model_hyperparameters[
                                'activation_2'],
                            activity_regularizer=local_activation_regularizer,
                            dropout=float(
                                local_model_hyperparameters['dropout_layer_2']
                            ),
                            return_sequences=False)))
                local_base_model.add(
                    RepeatVector(local_model_hyperparameters['repeat_vector']))
            # third LSTM layer
            if local_model_hyperparameters['units_layer_3'] > 0:
                local_base_model.add(
                    layers.Bidirectional(
                        layers.
                        RNN(PeepholeLSTMCell(
                            units=local_model_hyperparameters['units_layer_3'],
                            dropout=float(
                                local_model_hyperparameters['dropout_layer_3'])
                        ),
                            activity_regularizer=local_activation_regularizer,
                            return_sequences=False)))
                local_base_model.add(
                    RepeatVector(local_model_hyperparameters['repeat_vector']))
            # fourth layer (DENSE)
            if local_model_hyperparameters['units_layer_4'] > 0:
                local_base_model.add(
                    layers.Dense(
                        units=local_model_hyperparameters['units_layer_4'],
                        activation=local_model_hyperparameters['activation_4'],
                        activity_regularizer=local_activation_regularizer))
                local_base_model.add(
                    layers.Dropout(rate=float(
                        local_model_hyperparameters['dropout_layer_4'])))
            # final layer
            local_base_model.add(
                layers.Dense(
                    units=local_model_hyperparameters['units_final_layer']))

            # build and compile model
            local_base_model.build(
                input_shape=(1, local_time_steps_days,
                             local_features_for_each_training))
            local_base_model.compile(optimizer=local_optimizer_function,
                                     loss=local_losses_list,
                                     metrics=local_metrics_list)

            # save model architecture (template for specific models)
            local_base_model.save(''.join([
                local_settings['models_path'],
                '_unit_sales_forecaster_template_individual_ts.h5'
            ]))
            local_base_model_json = local_base_model.to_json()
            with open(''.join([local_settings['models_path'],
                               '_unit_sales_forecaster_forecaster_template_individual_ts.json']), 'w') \
                    as json_file:
                json_file.write(local_base_model_json)
                json_file.close()
            local_base_model.summary()

            # training model
            local_moving_window_length = local_settings['moving_window_input_length'] + \
                                         local_settings['moving_window_output_length']

            # loading x_train and y_train, previously done for third and fourth models trainings
            local_builder = local_bxy_x_y_builder()
            local_x_train, local_y_train = local_builder.build_x_y_train_arrays(
                local_raw_unit_sales, local_settings,
                local_model_hyperparameters)
            local_x_train = local_x_train.reshape(local_x_train.shape[0],
                                                  local_x_train.shape[2],
                                                  local_x_train.shape[1])
            local_y_train = local_x_train.reshape(local_y_train.shape[0],
                                                  local_y_train.shape[2],
                                                  local_y_train.shape[1])

            # star training time_serie by time_serie
            local_y_pred_array = np.zeros(shape=(local_raw_unit_sales.shape[0],
                                                 local_forecast_horizon_days),
                                          dtype=np.dtype('float32'))
            for time_serie in range(local_nof_ts):
                print('training time_serie:', time_serie)
                local_x, local_y = local_x_train[:, :, time_serie: time_serie + 1], \
                                   local_y_train[:, :, time_serie: time_serie + 1]
                # training, saving model and storing forecasts
                local_base_model.fit(local_x,
                                     local_y,
                                     batch_size=local_batch_size,
                                     epochs=local_epochs,
                                     workers=local_workers,
                                     callbacks=local_callbacks,
                                     shuffle=False,
                                     validation_split=local_validation_split)
                local_base_model.save_weights(''.join([
                    local_settings['models_path'],
                    '/_weights_unit_sales_NN_35_days/_individual_ts_',
                    str(time_serie), '_model_weights_.h5'
                ]))
                local_x_input = local_raw_unit_sales[
                    time_serie:time_serie + 1, -local_forecast_horizon_days:]
                local_x_input = local_x_input.reshape(1,
                                                      local_x_input.shape[1],
                                                      1)
                # print('x_input shape:', local_x_input.shape)
                local_y_pred = local_base_model.predict(local_x_input)
                # print('x_input:\n', local_x_input)
                # print('y_pred shape:', local_y_pred.shape)
                local_y_pred = local_y_pred.reshape(local_y_pred.shape[1])
                # print('ts:', time_serie)
                # print(local_y_pred)
                local_y_pred_array[time_serie:time_serie + 1, :] = local_y_pred
            local_point_forecast_normalized = local_y_pred_array.reshape(
                (local_y_pred_array.shape[0], local_y_pred_array.shape[1]))
            local_point_forecast = local_point_forecast_normalized.clip(0)

            # save points forecast
            np.save(
                ''.join([
                    local_settings['train_data_path'],
                    'point_forecast_NN_from_unit_sales_training'
                ]), local_point_forecast)
            np.save(
                ''.join([
                    local_settings['train_data_path'],
                    'eleventh_model_NN_unit_sales_forecast_data'
                ]), local_point_forecast)
            np.savetxt(''.join([
                local_settings['others_outputs_path'],
                'point_forecast_NN_from_unit_sales_training.csv'
            ]),
                       local_point_forecast,
                       fmt='%10.15f',
                       delimiter=',',
                       newline='\n')
            print('point forecasts saved to file')
            print(
                'submodule for build, train and forecast time_serie unit_sales individually finished successfully'
            )
            return True, local_point_forecast
        except Exception as submodule_error:
            print(
                'train model and forecast individual time_series units_sales_ submodule_error: ',
                submodule_error)
            logger.info(
                'error in training and forecast-individual time_serie unit_sales_ schema'
            )
            logger.error(str(submodule_error), exc_info=True)
            return False, []
Example #19
0
    def forecast(self, local_mse, local_normalized_scaled_unit_sales,
                 local_mean_unit_complete_time_serie, local_raw_unit_sales,
                 local_settings):
        try:
            print(
                'starting high loss (mse in aggregated LSTM) specific time_serie forecast submodule'
            )
            # set training parameters
            with open(''.join([local_settings['hyperparameters_path'],
                               'individual_time_serie_based_model_hyperparameters.json'])) \
                    as local_r_json_file:
                model_hyperparameters = json.loads(local_r_json_file.read())
                local_r_json_file.close()
            time_steps_days = int(local_settings['time_steps_days'])
            epochs = int(model_hyperparameters['epochs'])
            batch_size = int(model_hyperparameters['batch_size'])
            workers = int(model_hyperparameters['workers'])
            optimizer_function = model_hyperparameters['optimizer']
            optimizer_learning_rate = model_hyperparameters['learning_rate']
            if optimizer_function == 'adam':
                optimizer_function = optimizers.Adam(optimizer_learning_rate)
            elif optimizer_function == 'ftrl':
                optimizer_function = optimizers.Ftrl(optimizer_learning_rate)
            losses_list = []
            loss_1 = model_hyperparameters['loss_1']
            loss_2 = model_hyperparameters['loss_2']
            loss_3 = model_hyperparameters['loss_3']
            union_settings_losses = [loss_1, loss_2, loss_3]
            if 'mape' in union_settings_losses:
                losses_list.append(losses.MeanAbsolutePercentageError())
            if 'mse' in union_settings_losses:
                losses_list.append(losses.MeanSquaredError())
            if 'mae' in union_settings_losses:
                losses_list.append(losses.MeanAbsoluteError())
            if 'm_mape' in union_settings_losses:
                losses_list.append(modified_mape())
            if 'customized_loss_function' in union_settings_losses:
                losses_list.append(customized_loss())
            metrics_list = []
            metric1 = model_hyperparameters['metrics1']
            metric2 = model_hyperparameters['metrics2']
            union_settings_metrics = [metric1, metric2]
            if 'rmse' in union_settings_metrics:
                metrics_list.append(metrics.RootMeanSquaredError())
            if 'mse' in union_settings_metrics:
                metrics_list.append(metrics.MeanSquaredError())
            if 'mae' in union_settings_metrics:
                metrics_list.append(metrics.MeanAbsoluteError())
            if 'mape' in union_settings_metrics:
                metrics_list.append(metrics.MeanAbsolutePercentageError())
            l1 = model_hyperparameters['l1']
            l2 = model_hyperparameters['l2']
            if model_hyperparameters['regularizers_l1_l2'] == 'True':
                activation_regularizer = regularizers.l1_l2(l1=l1, l2=l2)
            else:
                activation_regularizer = None
            nof_features_by_training = 1
            forecaster = tf.keras.Sequential()
            print(
                'current model for specific high loss time_series: Mix_Bid_PeepHole_LSTM_Dense_ANN'
            )
            # first layer (DENSE)
            if model_hyperparameters['units_layer_1'] > 0:
                forecaster.add(
                    layers.Dense(
                        units=model_hyperparameters['units_layer_1'],
                        activation=model_hyperparameters['activation_1'],
                        activity_regularizer=activation_regularizer))
                forecaster.add(
                    layers.Dropout(
                        rate=float(model_hyperparameters['dropout_layer_1'])))
            # second LSTM layer
            if model_hyperparameters['units_layer_2'] > 0:
                forecaster.add(
                    layers.Bidirectional(
                        layers.RNN(PeepholeLSTMCell(
                            units=model_hyperparameters['units_layer_2'],
                            activation=model_hyperparameters['activation_2'],
                            activity_regularizer=activation_regularizer,
                            dropout=float(
                                model_hyperparameters['dropout_layer_2'])),
                                   return_sequences=False)))
                forecaster.add(
                    RepeatVector(model_hyperparameters['repeat_vector']))
            # third LSTM layer
            if model_hyperparameters['units_layer_3'] > 0:
                forecaster.add(
                    layers.Bidirectional(
                        layers.RNN(PeepholeLSTMCell(
                            units=model_hyperparameters['units_layer_3'],
                            activation=model_hyperparameters['activation_3'],
                            activity_regularizer=activation_regularizer,
                            dropout=float(
                                model_hyperparameters['dropout_layer_3'])),
                                   return_sequences=False)))
                forecaster.add(
                    RepeatVector(model_hyperparameters['repeat_vector']))
            # fourth layer (DENSE)
            if model_hyperparameters['units_layer_4'] > 0:
                forecaster.add(
                    layers.Dense(
                        units=model_hyperparameters['units_layer_4'],
                        activation=model_hyperparameters['activation_4'],
                        activity_regularizer=activation_regularizer))
                forecaster.add(
                    layers.Dropout(
                        rate=float(model_hyperparameters['dropout_layer_4'])))
            # final layer
            forecaster.add(layers.Dense(units=nof_features_by_training))
            forecaster.compile(optimizer=optimizer_function,
                               loss=losses_list,
                               metrics=metrics_list)
            # forecaster.saves(''.join([local_settings['models_path'], '_model_structure_']),
            #                 save_format='tf')
            forecaster.build(
                input_shape=(1, local_settings['forecast_horizon_days'], 1))
            forecaster_yaml = forecaster.to_yaml()
            with open(
                    ''.join([local_settings['models_path'],
                             'forecaster.yaml']), 'w') as yaml_file:
                yaml_file.write(forecaster_yaml)
            forecaster_untrained = forecaster
            print('specific time_serie model initialized and compiled')
            poor_results_mse_threshold = local_settings[
                'poor_results_mse_threshold']
            nof_selling_days = local_normalized_scaled_unit_sales.shape[1]
            last_learning_day_in_year = np.mod(nof_selling_days, 365)
            max_selling_time = local_settings['max_selling_time']
            days_in_focus_frame = model_hyperparameters['days_in_focus_frame']
            window_input_length = local_settings['moving_window_input_length']
            window_output_length = local_settings[
                'moving_window_output_length']
            moving_window_length = window_input_length + window_output_length
            nof_years = local_settings['number_of_years_ceil']
            time_series_individually_treated = []
            time_series_not_improved = []
            dirname = os.path.dirname(__file__)
            for result in local_mse:
                time_serie = int(result[0])
                file_path = os.path.join(
                    dirname, ''.join([
                        '.', local_settings['models_path'],
                        'specific_time_serie_',
                        str(time_serie), 'model_forecast_.h5'
                    ]))
                if os.path.isfile(
                        file_path) or result[1] <= poor_results_mse_threshold:
                    continue
                # training
                print('\ntime_serie: ', time_serie)
                time_serie_data = local_normalized_scaled_unit_sales[
                    time_serie, :]
                time_serie_data = time_serie_data.reshape(
                    time_serie_data.shape[0])
                nof_selling_days = time_serie_data.shape[0]
                # nof_moving_windows = np.int32(nof_selling_days / moving_window_length)
                remainder_days = np.mod(nof_selling_days, moving_window_length)
                window_first_days = [
                    first_day for first_day in range(0, nof_selling_days,
                                                     moving_window_length)
                ]
                length_window_walk = len(window_first_days)
                # last_window_start = window_first_days[length_window_walk - 1]
                if remainder_days != 0:
                    window_first_days[
                        length_window_walk -
                        1] = nof_selling_days - moving_window_length
                day_in_year = []
                [
                    day_in_year.append(last_learning_day_in_year + year * 365)
                    for year in range(nof_years)
                ]
                stride_window_walk = model_hyperparameters[
                    'stride_window_walk']
                print('defining x_train')
                x_train = []
                if local_settings['train_model_input_data_approach'] == "all":
                    [
                        x_train.append(
                            time_serie_data[day - time_steps_days:day -
                                            window_output_length])
                        for day in range(time_steps_days, max_selling_time,
                                         stride_window_walk)
                    ]
                elif local_settings[
                        'train_model_input_data_approach'] == "focused":
                    [
                        x_train.append(time_serie_data[day:day +
                                                       window_input_length])
                        for last_day in day_in_year[:-1] for day in range(
                            last_day + window_output_length, last_day +
                            window_output_length -
                            days_in_focus_frame, -stride_window_walk)
                    ]
                    # border condition, take care with last year, working with last data available
                    [
                        x_train.append(
                            time_serie_data[day - window_input_length:day])
                        for last_day in day_in_year[-1:] for day in range(
                            last_day, last_day -
                            days_in_focus_frame, -stride_window_walk)
                    ]
                    x_train = np.array(x_train)
                    print('x_train_shape:  ', x_train.shape)
                else:
                    logging.info(
                        "\ntrain_model_input_data_approach is not defined")
                    print('-a problem occurs with the data_approach settings')
                    return False, None
                print('defining y_train')
                y_train = []
                if local_settings['train_model_input_data_approach'] == "all":
                    [
                        y_train.append(
                            time_serie_data[day - window_output_length:day])
                        for day in range(time_steps_days, max_selling_time,
                                         stride_window_walk)
                    ]
                elif local_settings[
                        'train_model_input_data_approach'] == "focused":
                    [
                        y_train.append(time_serie_data[day:day +
                                                       window_output_length])
                        for last_day in day_in_year[:-1] for day in range(
                            last_day + window_output_length, last_day +
                            window_output_length -
                            days_in_focus_frame, -stride_window_walk)
                    ]
                    # border condition, take care with last year, working with last data available
                    [
                        y_train.append(
                            time_serie_data[day - window_output_length:day])
                        for last_day in day_in_year[-1:] for day in range(
                            last_day, last_day -
                            days_in_focus_frame, -stride_window_walk)
                    ]
                y_train = np.array(y_train)
                factor = local_settings['amplification_factor']
                max_time_serie = np.amax(x_train)
                x_train[x_train > 0] = max_time_serie * factor
                max_time_serie = np.amax(y_train)
                y_train[y_train > 0] = max_time_serie * factor
                print('x_train and y_train built done')

                # define callbacks, checkpoints namepaths
                model_weights = ''.join([
                    local_settings['checkpoints_path'],
                    'model_for_specific_time_serie_',
                    str(time_serie),
                    model_hyperparameters['current_model_name'],
                    "_loss_-{loss:.4f}-.hdf5"
                ])
                callback1 = cb.EarlyStopping(
                    monitor='loss',
                    patience=model_hyperparameters['early_stopping_patience'])
                callback2 = cb.ModelCheckpoint(model_weights,
                                               monitor='loss',
                                               verbose=1,
                                               save_best_only=True,
                                               mode='min')
                callbacks = [callback1, callback2]
                x_train = x_train.reshape(
                    (np.shape(x_train)[0], np.shape(x_train)[1], 1))
                y_train = y_train.reshape(
                    (np.shape(y_train)[0], np.shape(y_train)[1], 1))
                print('input_shape: ', np.shape(x_train))

                # train for each time_serie
                # check settings for repeat or not the training
                need_store_time_serie = True
                # load model
                time_series_individually_treated = np.load(''.join([
                    local_settings['models_evaluation_path'],
                    'improved_time_series_forecast.npy'
                ]))
                time_series_individually_treated = time_series_individually_treated.tolist(
                )
                model_name = ''.join([
                    'specific_time_serie_',
                    str(time_serie), 'model_forecast_.h5'
                ])
                model_path = ''.join(
                    [local_settings['models_path'], model_name])
                if os.path.isfile(model_path) and model_hyperparameters[
                        'repeat_one_by_one_training'] == "False":
                    forecaster = models.load_model(model_path,
                                                   custom_objects={
                                                       'modified_mape':
                                                       modified_mape,
                                                       'customized_loss':
                                                       customized_loss
                                                   })
                    need_store_time_serie = False
                elif model_hyperparameters['one_by_one_feature_training_done'] == "False"\
                        or model_hyperparameters['repeat_one_by_one_training'] == "True":
                    forecaster = forecaster_untrained
                    forecaster.fit(x_train,
                                   y_train,
                                   batch_size=batch_size,
                                   epochs=epochs,
                                   workers=workers,
                                   callbacks=callbacks,
                                   shuffle=False)
                    # print summary (informative; but if says "shape = multiple", probably useless)
                    forecaster.summary()

                # compile model and make forecast
                forecaster.compile(optimizer='adam', loss='mse')

                # evaluating model and comparing with aggregated (in-block) LSTM
                print('evaluating the model trained..')
                forecast_horizon_days = local_settings['forecast_horizon_days']
                time_serie_data = time_serie_data.reshape(
                    (1, time_serie_data.shape[0], 1))
                x_input = time_serie_data[:, -forecast_horizon_days:, :]
                y_pred_normalized = forecaster.predict(x_input)
                print('output shape: ', y_pred_normalized.shape)
                y_truth = local_raw_unit_sales[time_serie,
                                               -forecast_horizon_days:]
                y_truth = y_truth.reshape(1, np.shape(y_truth)[0])
                print('y_truth shape:', y_truth.shape)

                # reversing preprocess: rescale, denormalize, reshape
                # inverse reshape
                y_pred_reshaped = y_pred_normalized.reshape(
                    (y_pred_normalized.shape[2], y_pred_normalized.shape[1]))
                print('y_pred_reshaped shape:', y_pred_reshaped.shape)

                # inverse transform (first moving_windows denormalizing and then general rescaling)
                time_serie_data = time_serie_data.reshape(
                    np.shape(time_serie_data)[1], 1)
                print('time_serie data shape: ', np.shape(time_serie_data))
                time_serie_normalized_window_mean = np.mean(
                    time_serie_data[-moving_window_length:])
                print('mean of this time serie (normalized values): ',
                      time_serie_normalized_window_mean)
                local_denormalized_array = window_based_denormalizer(
                    y_pred_reshaped, time_serie_normalized_window_mean,
                    forecast_horizon_days)
                local_point_forecast = general_mean_rescaler(
                    local_denormalized_array,
                    local_mean_unit_complete_time_serie[time_serie],
                    forecast_horizon_days)
                print('rescaled denormalized forecasts array shape: ',
                      local_point_forecast.shape)

                # calculating MSE
                local_error_metric_mse = mean_squared_error(
                    y_truth, local_point_forecast)
                print('time_serie: ', time_serie, '\tMean_Squared_Error: ',
                      local_error_metric_mse)
                if local_error_metric_mse < result[1]:
                    print(
                        'better results with time_serie specific model training'
                    )
                    print('MSE improved from ', result[1], 'to ',
                          local_error_metric_mse)
                    # save models for this time serie
                    forecaster.save(''.join([
                        local_settings['models_path'], 'specific_time_serie_',
                        str(time_serie), 'model_forecast_.h5'
                    ]))
                    print('model for time_serie ', str(time_serie), " saved")
                    if need_store_time_serie:
                        time_series_individually_treated.append(
                            int(time_serie))
                else:
                    print(
                        'no better results with time serie specific model training'
                    )
                    time_series_not_improved.append(int(time_serie))
            time_series_individually_treated = np.array(
                time_series_individually_treated)
            time_series_not_improved = np.array(time_series_not_improved)
            # store data of (individual-approach) time_series forecast successfully improved and those that not
            np.save(
                ''.join([
                    local_settings['models_evaluation_path'],
                    'improved_time_series_forecast'
                ]), time_series_individually_treated)
            np.save(
                ''.join([
                    local_settings['models_evaluation_path'],
                    'time_series_not_improved'
                ]), time_series_not_improved)
            print(
                'forecast improvement done. (specific time_serie focused) submodule has finished'
            )
        except Exception as submodule_error:
            print('time_series individual forecast submodule_error: ',
                  submodule_error)
            logger.info(
                'error in forecast of individual (high_loss_identified_ts_forecast submodule)'
            )
            logger.error(str(submodule_error), exc_info=True)
            return False
        return True
    def train(self, local_settings, local_raw_unit_sales, local_model_hyperparameters, local_time_series_not_improved,
              raw_unit_sales_ground_truth):
        try:
            # data normalization
            local_forecast_horizon_days = local_settings['forecast_horizon_days']
            local_x_train, local_y_train = build_x_y_train_arrays(local_raw_unit_sales, local_settings,
                                                                  local_model_hyperparameters,
                                                                  local_time_series_not_improved)
            local_forecast_horizon_days = local_settings['forecast_horizon_days']
            local_features_for_each_training = 1
            print('starting neural network - individual time_serie training')
            # building architecture and compiling model_template
            # set training parameters
            local_time_steps_days = int(local_settings['time_steps_days'])
            local_epochs = int(local_model_hyperparameters['epochs'])
            local_batch_size = int(local_model_hyperparameters['batch_size'])
            local_workers = int(local_model_hyperparameters['workers'])
            local_optimizer_function = local_model_hyperparameters['optimizer']
            local_optimizer_learning_rate = local_model_hyperparameters['learning_rate']
            if local_optimizer_function == 'adam':
                local_optimizer_function = optimizers.Adam(local_optimizer_learning_rate)
            elif local_optimizer_function == 'ftrl':
                local_optimizer_function = optimizers.Ftrl(local_optimizer_learning_rate)
            local_losses_list = []
            local_loss_1 = local_model_hyperparameters['loss_1']
            local_loss_2 = local_model_hyperparameters['loss_2']
            local_loss_3 = local_model_hyperparameters['loss_3']
            local_union_settings_losses = [local_loss_1, local_loss_2, local_loss_3]
            if 'mape' in local_union_settings_losses:
                local_losses_list.append(losses.MeanAbsolutePercentageError())
            if 'mse' in local_union_settings_losses:
                local_losses_list.append(losses.MeanSquaredError())
            if 'mae' in local_union_settings_losses:
                local_losses_list.append(losses.MeanAbsoluteError())
            if 'm_mape' in local_union_settings_losses:
                local_losses_list.append(modified_mape())
            if 'customized_loss_function' in local_union_settings_losses:
                local_losses_list.append(customized_loss())
            if 'pinball_loss_function' in local_union_settings_losses:
                local_losses_list.append(pinball_function_loss())
            local_metrics_list = []
            local_metric1 = local_model_hyperparameters['metrics1']
            local_metric2 = local_model_hyperparameters['metrics2']
            local_union_settings_metrics = [local_metric1, local_metric2]
            if 'rmse' in local_union_settings_metrics:
                local_metrics_list.append(metrics.RootMeanSquaredError())
            if 'mse' in local_union_settings_metrics:
                local_metrics_list.append(metrics.MeanSquaredError())
            if 'mae' in local_union_settings_metrics:
                local_metrics_list.append(metrics.MeanAbsoluteError())
            if 'mape' in local_union_settings_metrics:
                local_metrics_list.append(metrics.MeanAbsolutePercentageError())
            local_l1 = local_model_hyperparameters['l1']
            local_l2 = local_model_hyperparameters['l2']
            if local_model_hyperparameters['regularizers_l1_l2'] == 'True':
                local_activation_regularizer = regularizers.l1_l2(l1=local_l1, l2=local_l2)
            else:
                local_activation_regularizer = None
            # define callbacks, checkpoints namepaths
            local_callback1 = cb.EarlyStopping(monitor='loss',
                                               patience=local_model_hyperparameters['early_stopping_patience'])
            local_callbacks = [local_callback1]
            print('building current model: Mix_Bid_PeepHole_LSTM_Dense_ANN')
            local_base_model = tf.keras.Sequential()
            # first layer (DENSE)
            if local_model_hyperparameters['units_layer_1'] > 0:
                # strictly dim 1 of input_shape is ['time_steps_days'] (dim 0 is number of batches: None)
                local_base_model.add(layers.Dense(units=local_model_hyperparameters['units_layer_1'],
                                                  activation=local_model_hyperparameters['activation_1'],
                                                  input_shape=(local_time_steps_days,
                                                               local_features_for_each_training),
                                                  activity_regularizer=local_activation_regularizer))
                local_base_model.add(layers.Dropout(rate=float(local_model_hyperparameters['dropout_layer_1'])))
            # second layer
            if local_model_hyperparameters['units_layer_2']:
                if local_model_hyperparameters['units_layer_1'] == 0:
                    local_base_model.add(layers.RNN(
                        PeepholeLSTMCell(units=local_model_hyperparameters['units_layer_2'],
                                         activation=local_model_hyperparameters['activation_2'],
                                         input_shape=(local_time_steps_days,
                                                      local_features_for_each_training),
                                         dropout=float(local_model_hyperparameters['dropout_layer_2']))))
                else:
                    local_base_model.add(layers.RNN(
                        PeepholeLSTMCell(units=local_model_hyperparameters['units_layer_2'],
                                         activation=local_model_hyperparameters['activation_2'],
                                         dropout=float(local_model_hyperparameters['dropout_layer_2']))))
                # local_base_model.add(RepeatVector(local_model_hyperparameters['repeat_vector']))
            # third layer
            if local_model_hyperparameters['units_layer_3'] > 0:
                local_base_model.add(layers.Dense(units=local_model_hyperparameters['units_layer_3'],
                                                  activation=local_model_hyperparameters['activation_3'],
                                                  activity_regularizer=local_activation_regularizer))
                local_base_model.add(layers.Dropout(rate=float(local_model_hyperparameters['dropout_layer_3'])))
            # fourth layer
            if local_model_hyperparameters['units_layer_4'] > 0:
                local_base_model.add(layers.RNN(
                    PeepholeLSTMCell(units=local_model_hyperparameters['units_layer_4'],
                                     activation=local_model_hyperparameters['activation_4'],
                                     dropout=float(local_model_hyperparameters['dropout_layer_4']))))
            local_base_model.add(layers.Dense(units=local_forecast_horizon_days))

            # build and compile model
            local_base_model.build(input_shape=(1, local_time_steps_days, local_features_for_each_training))
            local_base_model.compile(optimizer=local_optimizer_function,
                                     loss=local_losses_list,
                                     metrics=local_metrics_list)

            # save model architecture (template for specific models)
            local_base_model.save(''.join([local_settings['models_path'],
                                           'generic_forecaster_template_individual_ts.h5']))
            local_base_model_json = local_base_model.to_json()
            with open(''.join([local_settings['models_path'],
                               'generic_forecaster_template_individual_ts.json']), 'w') as json_file:
                json_file.write(local_base_model_json)
                json_file.close()
            local_base_model.summary()

            # training model
            local_moving_window_length = local_settings['moving_window_input_length'] + \
                                         local_settings['moving_window_output_length']
            # all input data in the correct type
            local_x_train = np.array(local_x_train, dtype=np.dtype('float32'))
            local_y_train = np.array(local_y_train, dtype=np.dtype('float32'))
            local_raw_unit_sales = np.array(local_raw_unit_sales, dtype=np.dtype('float32'))
            # specific time_serie models training loop
            local_y_pred_list = []
            local_nof_time_series = local_settings['number_of_time_series']
            remainder = np.array([time_serie for time_serie in range(local_nof_time_series)
                                  if time_serie not in local_time_series_not_improved])
            for time_serie in remainder:
                # ----------------------key_point---------------------------------------------------------------------
                # take note that each loop the weights and internal last states of previous training are conserved
                # that's probably save times and (in aggregated or ordered) connected time series will improve results
                # ----------------------key_point---------------------------------------------------------------------
                print('training time_serie:', time_serie)
                local_x, local_y = local_x_train[:, time_serie: time_serie + 1, :], \
                                   local_y_train[:, time_serie: time_serie + 1, :]
                local_x = local_x.reshape(local_x.shape[0], local_x.shape[2], 1)
                local_y = local_y.reshape(local_y.shape[0], local_y.shape[2], 1)
                # training, saving model and storing forecasts
                local_base_model.fit(local_x, local_y, batch_size=local_batch_size, epochs=local_epochs,
                                     workers=local_workers, callbacks=local_callbacks, shuffle=False)
                local_base_model.save_weights(''.join([local_settings['models_path'],
                                                       '/weights_last_year/_individual_ts_',
                                                       str(time_serie), '_model_weights_.h5']))
                local_x_input = local_raw_unit_sales[time_serie: time_serie + 1, -local_forecast_horizon_days:]
                local_x_input = cof_zeros(local_x_input, local_settings)
                local_x_input = local_x_input.reshape(1, local_x_input.shape[1], 1)
                print('x_input shape:', local_x_input.shape)
                local_y_pred = local_base_model.predict(local_x_input)
                print('x_input:\n', local_x_input)
                print('y_pred shape:', local_y_pred.shape)
                local_y_pred = local_y_pred.reshape(local_y_pred.shape[1])
                local_y_pred = cof_zeros(local_y_pred, local_settings)
                if local_settings['mini_ts_evaluator'] == "True" and \
                        local_settings['competition_stage'] != 'submitting_after_June_1th_using_1941days':
                    mini_evaluator = mini_evaluator_submodule()
                    evaluation = mini_evaluator.evaluate_ts_forecast(
                            raw_unit_sales_ground_truth[time_serie, -local_forecast_horizon_days:], local_y_pred)
                    print('ts:', time_serie, 'with cof_zeros ts mse:', evaluation)
                else:
                    print('ts:', time_serie)
                print(local_y_pred)
                local_y_pred_list.append(local_y_pred)
            local_point_forecast_array = np.array(local_y_pred_list)
            local_point_forecast_normalized = local_point_forecast_array.reshape(
                (local_point_forecast_array.shape[0], local_point_forecast_array.shape[1]))
            local_point_forecast = local_point_forecast_normalized

            # save points forecast
            np.savetxt(''.join([local_settings['others_outputs_path'], 'point_forecast_NN_LSTM_simulation.csv']),
                       local_point_forecast, fmt='%10.15f', delimiter=',', newline='\n')
            print('point forecasts saved to file')
            print('submodule for build, train and forecast time_serie individually finished successfully')
            return True
        except Exception as submodule_error:
            print('train model and forecast individual time_series submodule_error: ', submodule_error)
            logger.info('error in training and forecast-individual time_serie schema')
            logger.error(str(submodule_error), exc_info=True)
            return False