def reduction_a(net, k, l, m, n): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, n, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, k, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, l, 3, scope='Conv2d_0b_3x3') tower_conv1_2 = slim.conv2d(tower_conv1_1, m, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3) return net
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): """Builds the 8x8 resnet block.""" with tf.variable_scope(scope, 'Block8', [net], reuse=reuse): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 192, [1, 3], scope='Conv2d_0b_1x3') tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [3, 1], scope='Conv2d_0c_3x1') mixed = tf.concat([tower_conv, tower_conv1_2], 3) up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, activation_fn=None, scope='Conv2d_1x1') net += scale * up if activation_fn: net = activation_fn(net) return net
def reduction_b(net): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1, 256, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv2_1 = slim.conv2d(tower_conv2, 256, 3, scope='Conv2d_0b_3x3') tower_conv2_2 = slim.conv2d(tower_conv2_1, 256, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_3'): tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat([tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool], 3) return net
def inception_resnet_v1(inputs, is_training=True, dropout_keep_prob=0.8, bottleneck_layer_size=128, reuse=None, scope='InceptionResnetV1'): """Creates the Inception Resnet V1 model. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. num_classes: number of predicted classes. is_training: whether is training or not. dropout_keep_prob: float, the fraction to keep before final layer. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: logits: the logits outputs of the model. end_points: the set of end_points from the inception model. """ end_points = {} with tf.variable_scope(scope, 'InceptionResnetV1', [inputs], reuse=reuse): with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # 149 x 149 x 32 net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') end_points['Conv2d_1a_3x3'] = net # 147 x 147 x 32 net = slim.conv2d(net, 32, 3, padding='VALID', scope='Conv2d_2a_3x3') end_points['Conv2d_2a_3x3'] = net # 147 x 147 x 64 net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3') end_points['Conv2d_2b_3x3'] = net # 73 x 73 x 64 net = slim.max_pool2d(net, 3, stride=2, padding='VALID', scope='MaxPool_3a_3x3') end_points['MaxPool_3a_3x3'] = net # 73 x 73 x 80 net = slim.conv2d(net, 80, 1, padding='VALID', scope='Conv2d_3b_1x1') end_points['Conv2d_3b_1x1'] = net # 71 x 71 x 192 net = slim.conv2d(net, 192, 3, padding='VALID', scope='Conv2d_4a_3x3') end_points['Conv2d_4a_3x3'] = net # 35 x 35 x 256 net = slim.conv2d(net, 256, 3, stride=2, padding='VALID', scope='Conv2d_4b_3x3') end_points['Conv2d_4b_3x3'] = net # 5 x Inception-resnet-A net = slim.repeat(net, 5, block35, scale=0.17) # Reduction-A with tf.variable_scope('Mixed_6a'): net = reduction_a(net, 192, 192, 256, 384) end_points['Mixed_6a'] = net # 10 x Inception-Resnet-B net = slim.repeat(net, 10, block17, scale=0.10) # Reduction-B with tf.variable_scope('Mixed_7a'): net = reduction_b(net) end_points['Mixed_7a'] = net # 5 x Inception-Resnet-C net = slim.repeat(net, 5, block8, scale=0.20) net = block8(net, activation_fn=None) with tf.variable_scope('Logits'): end_points['PrePool'] = net # pylint: disable=no-member net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID', scope='AvgPool_1a_8x8') net = slim.flatten(net) net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='Dropout') end_points['PreLogitsFlatten'] = net net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None, scope='Bottleneck', reuse=False) return net, end_points