def inference(x, n_in=None, n_time=None, n_hidden=None, n_out=None):
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.01)
        return tf.Variable(initial)

    def bias_variable(shape):
        initial = tf.zeros(shape, dtype=tf.float32)
        return tf.Variable(initial)

    # 時系列データの形式をAPIの仕様に合わせるため、最終的に
    # (ミニバッチサイズ, 入力次元数) が時間長分ある形に変形
    x = tf.transpose(x, [1, 0, 2])
    x = tf.reshape(x, [-1, n_in])
    x = tf.split(x, n_time, 0)

    cell_forward = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
    cell_backward = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)

    outputs, _, _ = \
        tf.nn.static_bidirectional_rnn(cell_forward, cell_backward, x,
                                       dtype=tf.float32)

    W = weight_variable([n_hidden * 2, n_out])
    b = bias_variable([n_out])

    y = tf.nn.softmax(tf.matmul(outputs[-1], W) + b)

    return y
Example #2
0
File: ops.py Project: mxxhcm/code
def lstm_model3(inputs, reuse=False, layers_number=2, num_units=256, scope="l"):
    shape = inputs[0].shape
    observation_n = []
    for i in range(len(inputs)):
        obs = inputs[i]
        if not reuse and i == 0:
            reuse = False
        else:
            reuse = True
        x = []
        with tf.variable_scope(scope, reuse=reuse):
            for j in range(shape[2]):
                dr_reuse = True
                if j == 0 and not reuse:
                    dr_reuse = False
                out = layers.fully_connected(obs[:, :, j], num_outputs=num_units * 4, activation_fn=tf.nn.relu,
                                             scope="first", reuse=dr_reuse)
                out = layers.fully_connected(out, num_outputs=num_units, activation_fn=tf.nn.relu,
                                             scope="second", reuse=dr_reuse)
                x.append(tf.expand_dims(out, 2))
            x = tf.concat(x, 2)
            lstm_size = x.shape[1]

        # dimension reduction 3096->1024->256
        with tf.variable_scope(scope, reuse=reuse):
            x = tf.transpose(x, (2, 0, 1))  # (time_steps, batch_size, state_size)
            lstm_cell = rnn.BasicLSTMCell(lstm_size, forget_bias=1, state_is_tuple=True)
            cell = rnn.MultiRNNCell([lstm_cell] * layers_number, state_is_tuple=True)
            with tf.variable_scope("Multi_Layer_RNN"):
                cell_outputs, states = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32)
            outputs = cell_outputs[-1:, :, :]
            outputs = tf.squeeze(outputs, 0)
            observation_n.append(outputs)
    return observation_n
Example #3
0
def RNN(x, weights, biases):
    x = tf.transpose(x, [1, 0, 2])  #64,13,21 ->13,64,21
    x = tf.reshape(x, [-1, n_input])  #13*64,21
    #将x 切成n_steps=28个子张量
    x = tf.split(axis=0, num_or_size_splits=n_window, value=x)
    lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
    return tf.matmul(outputs[-1], weights['out']) + biases['out']
Example #4
0
    def __init__(self, args, data, infer=False):
        if infer:
            args.batch_size = 1
            args.seq_length = 1
        with tf.name_scope('inputs'):
            self.input_data = tf.placeholder(
                tf.int32, [args.batch_size, args.seq_length])
            self.target_data = tf.placeholder(
                tf.int32, [args.batch_size, args.seq_length])

        with tf.name_scope('model'):
            self.cell = rnn_cell.BasicLSTMCell(args.state_size)
            self.cell = rnn_cell.MultiRNNCell([self.cell] * args.num_layers)
            self.initial_state = self.cell.zero_state(args.batch_size,
                                                      tf.float32)
            with tf.variable_scope('rnnlm'):
                w = tf.get_variable('softmax_w',
                                    [args.state_size, data.vocab_size])
                b = tf.get_variable('softmax_b', [data.vocab_size])
                with tf.device("/cpu:0"):
                    embedding = tf.get_variable(
                        'embedding', [data.vocab_size, args.state_size])
                    inputs = tf.nn.embedding_lookup(embedding, self.input_data)
            outputs, last_state = tf.nn.dynamic_rnn(
                self.cell, inputs, initial_state=self.initial_state)

        with tf.name_scope('loss'):
            output = tf.reshape(outputs, [-1, args.state_size])

            self.logits = tf.matmul(output, w) + b
            self.probs = tf.nn.softmax(self.logits)
            self.last_state = last_state

            targets = tf.reshape(self.target_data, [-1])
            loss = seq2seq.sequence_loss_by_example(
                [self.logits], [targets],
                [tf.ones_like(targets, dtype=tf.float32)])
            self.cost = tf.reduce_sum(loss) / args.batch_size
            tf.summary.scalar('loss', self.cost)

        with tf.name_scope('optimize'):
            self.lr = tf.placeholder(tf.float32, [])
            tf.summary.scalar('learning_rate', self.lr)
            optimizer = tf.train.AdamOptimizer(self.lr)
            tvars = tf.trainable_variables()
            grads = tf.gradients(self.cost, tvars)
            for g in grads:
                tf.summary.histogram(g.name, g)
            grads, _ = tf.clip_by_global_norm(grads, args.grad_clip)

            self.train_op = optimizer.apply_gradients(zip(grads, tvars))
            self.merged_op = tf.summary.merge_all()
Example #5
0
def reccurent_neural_network(x):
    layer = {
        'weights': tf.Variable(tf.random_normal([rnn_size, n_classes])),
        'biases': tf.Variable(tf.random_normal([n_classes]))
    }

    x = tf.transpose(x, [1, 0, 2])
    x = tf.reshape(x, [-1, chunk_size])
    x = tf.split(x, n_chunks, 0)

    lstm_cell = rnn_cell.BasicLSTMCell(rnn_size)
    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)

    output = tf.matmul(outputs[-1], layer['weights']) + layer['biases']

    return output
Example #6
0
def inference(x, y, n_batch, is_training,
              input_digits=None, output_digits=None,
              n_hidden=None, n_out=None):
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.01)
        return tf.Variable(initial)

    def bias_variable(shape):
        initial = tf.zeros(shape, dtype=tf.float32)
        return tf.Variable(initial)

    # Encoder
    encoder = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
    state = encoder.zero_state(n_batch, tf.float32)
    encoder_outputs = []
    encoder_states = []

    with tf.variable_scope('Encoder'):
        for t in range(input_digits):
            if t > 0:
                tf.get_variable_scope().reuse_variables()
            (output, state) = encoder(x[:, t, :], state)
            encoder_outputs.append(output)
            encoder_states.append(state)

    # Decoder
    decoder = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
    state = encoder_states[-1]
    decoder_outputs = [encoder_outputs[-1]]

    # 出力層の重みとバイアスを事前に定義
    V = weight_variable([n_hidden, n_out])
    c = bias_variable([n_out])
    outputs = []

    with tf.variable_scope('Decoder'):
        for t in range(1, output_digits):
            if t > 1:
                tf.get_variable_scope().reuse_variables()

            if is_training is True:
                (output, state) = decoder(y[:, t-1, :], state)
            else:
                # 直前の出力を入力に用いる
                linear = tf.matmul(decoder_outputs[-1], V) + c
                out = tf.nn.softmax(linear)
                outputs.append(out)
                out = tf.one_hot(tf.argmax(out, -1), depth=output_digits)
                (output, state) = decoder(out, state)

            decoder_outputs.append(output)

    if is_training is True:
        output = tf.reshape(tf.concat(decoder_outputs, axis=1),
                            [-1, output_digits, n_hidden])

        linear = tf.einsum('ijk,kl->ijl', output, V) + c
        # linear = tf.matmul(output, V) + c
        return tf.nn.softmax(linear)
    else:
        # 最後の出力を求める
        linear = tf.matmul(decoder_outputs[-1], V) + c
        out = tf.nn.softmax(linear)
        outputs.append(out)

        output = tf.reshape(tf.concat(outputs, axis=1),
                            [-1, output_digits, n_out])
        return output